Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Search

Page Path
HOME > Search
18 "Compatibility"
Filter
Filter
Article category
Keywords
Publication year
Authors
Review Article
Comparative evaluation of the biological response of conventional and resin modified glass ionomer cement on human cells: a systematic review
Shishir Singh, Gaurav Kulkarni, R S Mohan Kumar, Romi Jain, Ameya M Lokhande, Teena K Sitlaney, Musharraf H F Ansari, Navin S Agarwal
Restor Dent Endod 2024;49(4):e41.   Published online November 1, 2024
DOI: https://doi.org/10.5395/rde.2024.49.e41
AbstractAbstract PDFPubReaderePub

This review aimed to evaluate and compare the biological response (biocompatibility and cytotoxicity) of resin modified glass ionomer cement (RMGIC) in contrast to conventional glass ionomer cement (GIC) on human cells. Articles reporting parallel and split-mouth clinical trials, randomized controlled trials, non-randomized controlled trials, prospective studies, and in vitro studies on human permanent teeth that assessed the biological response of GIC and RMGIC were included. The following electronic bibliographic databases were searched using the keywords: MEDLINE/PubMed, EBSCO, Cochrane Central Register of Controlled Trials, and Google Scholar. For the risk of bias MINORS tool and the modified scale of Animal Research: Reporting of In Vivo Experiments and Consolidated Standards of Reporting Trials were used. Initial screening identified 552 studies, of which 9 articles met the inclusion criteria and were included in the study. Different parameters such as odontoblastic changes, inflammatory response, tertiary dentin formation, presence of microorganisms, morphological changes, cell viability, number, and metabolism were used to evaluate the biological response of conventional GIC and RMGICs. Conventional GIC shows lower cytotoxicity compared to RMGIC in vital pulp therapy procedures. Further, in vivo studies and long-term clinical trials are needed to compare these observations for pulp therapy using the 2 test materials.

Trial Registration

PROSPERO Identifier: CRD42023426021

  • 80 View
  • 4 Download
Close layer
Research Articles
Biological assessment of a new ready-to-use hydraulic sealer
Francine Benetti, João Eduardo Gomes-Filho, India Olinta de Azevedo-Queiroz, Marina Carminatti, Letícia Citelli Conti, Alexandre Henrique dos Reis-Prado, Sandra Helena Penha de Oliveira, Edilson Ervolino, Elói Dezan-Júnior, Luciano Tavares Angelo Cintra
Restor Dent Endod 2021;46(2):e21.   Published online March 24, 2021
DOI: https://doi.org/10.5395/rde.2021.46.e21
AbstractAbstract PDFPubReaderePub
Objectives

This study compared the cytotoxicity, biocompatibility, and tenascin immunolabeling of a new ready-to-use hydraulic sealer (Bio-C Sealer) with MTA-Fillapex and white MTA-Angelus.

Materials and Methods

L929 fibroblasts were cultivated and exposed to undiluted and diluted material extracts. Polyethylene tubes with or without (the control) the materials were implanted into the dorsa of rats. At 7 days and 30 days, the rats were euthanized, and the specimens were prepared for analysis; inflammation and immunolabeling were measured, and statistical analysis was performed (p < 0.05).

Results

MTA-Fillapex exhibited greater cytotoxicity than the other materials at all time points (p < 0.05). The undiluted Bio-C Sealer exhibited greater cytocompatibility at 6 and 48 hours than white MTA-Angelus, with higher cell viability than in the control (p < 0.05). White MTA-Angelus displayed higher cell viability than the control at 24 hours, and the one-half dilution displayed similar results at both 6 and 48 hours (p < 0.05). At 7 days and 30 days, the groups exhibited moderate inflammation with thick fibrous capsules and mild inflammation with thin fibrous capsules, respectively (p > 0.05). At 7 days, moderate to strong immunolabeling was observed (p > 0.05). After 30 days, the control and MTA-Fillapex groups exhibited strong immunolabeling, the white MTA-Angelus group exhibited moderate immunolabeling (p > 0.05), and the Bio-C Sealer group exhibited low-to-moderate immunolabeling, differing significantly from the control (p < 0.05).

Conclusions

Bio-C Sealer and white MTA-Angelus exhibited greater cytocompatibility than MTA-Fillapex; all materials displayed adequate biocompatibility and induced tenascin immunolabeling.

  • 23 View
  • 1 Download
  • 4 Web of Science
Close layer
Biocompatibility and bioactive potential of the NeoMTA Plus endodontic bioceramic-based sealer
Roberto Alameda Hoshino, Mateus Machado Delfino, Guilherme Ferreira da Silva, Juliane Maria Guerreiro-Tanomaru, Mário Tanomaru-Filho, Estela Sasso-Cerri, Paulo Sérgio Cerri
Restor Dent Endod 2021;46(1):e4.   Published online December 17, 2020
DOI: https://doi.org/10.5395/rde.2021.46.e4
AbstractAbstract PDFPubReaderePub
Objectives

This study evaluated the biocompatibility and bioactive potential of NeoMTA Plus mixed as a root canal sealer in comparison with MTA Fillapex.

Materials and Methods

Polyethylene tubes filled with NeoMTA Plus (n = 20), MTA Fillapex (n = 20), or nothing (control group, CG; n = 20) were inserted into the connective tissue in the dorsal subcutaneous layer of rats. After 7, 15, 30 and 60 days, the specimens were processed for paraffin embedding. The capsule thickness, collagen content, and number of inflammatory cells (ICs) and interleukin-6 (IL-6) immunolabeled cells were measured. von Kossa-positive structures were evaluated and unstained sections were analyzed under polarized light. Two-way analysis of variance was performed, followed by the post hoc Tukey test (p ≤ 0.05).

Results

At 7 days, the capsules around NeoMTA Plus and MTA Fillapex had more ICs and IL-6-immunostained cells than the CG. However, at 60 days, there was no significant difference in the IC number between NeoMTA Plus and the CG (p = 0.1137) or the MTA Fillapex group (p = 0.4062), although a greater number of IL-6-immunostained cells was observed in the MTA Fillapex group (p = 0.0353). From 7 to 60 days, the capsule thickness of the NeoMTA Plus and MTA Fillapex specimens significantly decreased, concomitantly with an increase in the collagen content. The capsules around root canal sealers showed positivity to the von Kossa stain and birefringent structures.

Conclusions

The NeoMTA Plus root canal sealer is biocompatible and exhibits bioactive potential.

  • 35 View
  • 1 Download
  • 10 Web of Science
Close layer
Cytotoxicity and biocompatibility of high mol% yttria containing zirconia
Gulsan Ara Sathi Kazi, Ryo Yamagiwa
Restor Dent Endod 2020;45(4):e52.   Published online October 14, 2020
DOI: https://doi.org/10.5395/rde.2020.45.e52
AbstractAbstract PDFPubReaderePub
Objectives

Yttria-stabilized tetragonal phase zirconia has been used as a dental restorative material for over a decade. While it is still the strongest and toughest ceramic, its translucency remains as a significant drawback. To overcome this, stabilizing the translucency zirconia to a significant cubic crystalline phase by increasing the yttria content to more than 8 mol% (8YTZP). However, the biocompatibility of a high amount of yttria is still an important topic that needs to be investigated.

Materials and Methods

Commercially available 8YTZP plates were used. To enhance cell adhesion, proliferation, and differentiation, the surface of the 8YTZP is sequentially polished with a SiC-coated abrasive paper and surface coating with type I collagen. Fibroblast-like cells L929 used for cell adherence and cell proliferation analysis, and mouse bone marrow-derived mesenchymal stem cells (BMSC) used for cell differentiation analysis.

Results

The results revealed that all samples, regardless of the surface treatment, are hydrophilic and showed a strong affinity for water. Even the cell culture results indicate that simple surface polishing and coating can affect cellular behavior by enhancing cell adhesion and proliferation. Both L929 cells and BMSC were nicely adhered to and proliferated in all conditions.

Conclusions

The results demonstrate the biocompatibility of the cubic phase zirconia with 8 mol% yttria and suggest that yttria with a higher zirconia content are not toxic to the cells, support a strong adhesion of cells on their surfaces, and promote cell proliferation and differentiation. All these confirm its potential use in tissue engineering.

  • 38 View
  • 0 Download
Close layer
Review Article
Calcium silicate-based root canal sealers: a literature review
Miyoung Lim, Chanyong Jung, Dong-Hoon Shin, Yong-bum Cho, Minju Song
Restor Dent Endod 2020;45(3):e35.   Published online June 9, 2020
DOI: https://doi.org/10.5395/rde.2020.45.e35
AbstractAbstract PDFPubReaderePub

Epoxy resin-based sealers are currently widely used, and several studies have considered AH Plus to be the gold-standard sealer. However, it still has limitations, including possible mutagenicity, cytotoxicity, inflammatory response, and hydrophobicity. Drawing upon the advantages of mineral trioxide aggregate, calcium silicate-based sealers were introduced with high levels of biocompatibility and hydrophilicity. Because of the hydrophilic environment in root canals, water resorption and solubility of root canal sealers are important factors contributing to their stability. Sealers displaying lower microleakage and stronger push-out bond strength are also needed to endure the dynamic tooth environment. Although the physical properties of calcium silicate-based sealers meet International Organization for Standardization recommendations, and they have consistently reported to be biocompatible, they have not overcome conventional resin-based sealers in actual practice. Therefore, further studies aiming to improve the physical properties of calcium silicate-based sealers are needed.

  • 38 View
  • 1 Download
Close layer
Research Articles
Effects of the exposure site on histological pulpal responses after direct capping with 2 calcium-silicate based cements in a rat model
Panruethai Trongkij, Supachai Sutimuntanakul, Puangwan Lapthanasupkul, Chitpol Chaimanakarn, Rebecca Wong, Danuchit Banomyong
Restor Dent Endod 2018;43(4):e36.   Published online August 22, 2018
DOI: https://doi.org/10.5395/rde.2018.43.e36
AbstractAbstract PDFPubReaderePub
Objectives

Direct pulp capping is a treatment for mechanically exposed pulp in which a biocompatible capping material is used to preserve pulpal vitality. Biocompatibility tests in animal studies have used a variety of experimental protocols, particularly with regard to the exposure site. In this study, pulp exposure on the occlusal and mesial surfaces of molar teeth was investigated in a rat model.

Materials and Methods

A total of 58 maxillary first molars of Wistar rats were used. Forty molars were mechanically exposed and randomly assigned according to 3 factors: 1) the exposure site (occlusal or mesial), 2) the pulp-capping material (ProRoot White MTA or Bio-MA), and 3) 2 follow-up periods (1 day or 7 days) (n = 5 each). The pulp of 6 intact molars served as negative controls. The pulp of 12 molars was exposed without a capping material (n = 3 per exposure site for each period) and served as positive controls. Inflammatory cell infiltration and reparative dentin formation were histologically evaluated at 1 and 7 days using grading scores.

Results

At 1 day, localized mild inflammation was detected in most teeth in all experimental groups. At 7 days, continuous/discontinuous calcified bridges were formed at exposure sites with no or few inflammatory cells. No significant differences in pulpal response according to the exposure site or calcium-silicate cement were observed.

Conclusions

The location of the exposure site had no effect on rat pulpal healing. However, mesial exposures could be performed easily, with more consistent results. The pulpal responses were not significantly different between the 2 capping materials.

  • 23 View
  • 0 Download
Close layer
In vitro evaluation of a newly produced resin-based endodontic sealer
Yoo-Seok Song, Yoorina Choi, Myung-Jin Lim, Mi-Kyung Yu, Chan-Ui Hong, Kwang-Won Lee, Kyung-San Min
Restor Dent Endod 2016;41(3):189-195.   Published online July 26, 2016
DOI: https://doi.org/10.5395/rde.2016.41.3.189
AbstractAbstract PDFPubReaderePub
Objectives

A variety of root canal sealers were recently launched to the market. This study evaluated physicochemical properties, biocompatibility, and sealing ability of a newly launched resin-based sealer (Dia-Proseal, Diadent) compared to the existing root canal sealers (AHplus, Dentsply DeTrey and ADseal, Metabiomed).

Materials and Methods

The physicochemical properties of the tested sealers including pH, solubility, dimensional change, and radiopacity were evaluated. Biocompatibility was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. For microleakage test, single-rooted teeth were instrumented, and obturated with gutta-percha and one of the sealers (n = 10). After immersion in 1% methylene blue solution for 2 weeks, the specimens were split longitudinally. Then, the maximum length of staining was measured. Statistical analysis was performed by one-way analysis of variance followed by Tukey test (p = 0.05).

Results

Dia-Proseal showed the highest pH value among the tested sealers (p < 0.05). ADseal showed higher dimensional change compared to AHplus and Dia-Proseal (p < 0.05). The solubility values of AHplus and Dia-Proseal were similar, whereas ADseal had the lowest solubility value (p < 0.05). The flow values of sealer in increasing order were AHplus, DiaProseal, and ADseal (p < 0.05). The radiopacity of AHplus was higher than those of ADseal and Dia-Proseal (p < 0.05). The cell viability of the tested materials was statistically similar throughout the experimental period. There were no significant differences in microleakage values among the tested samples.

Conclusions

The present study indicates that Dia-Proseal has acceptable physicochemical properties, biocompatibility, and sealing ability.

  • 25 View
  • 0 Download
Close layer
Cytotoxicity and biocompatibility of Zirconia (Y-TZP) posts with various dental cements
Hyeongsoon Shin, Hyunjung Ko, Miri Kim
Restor Dent Endod 2016;41(3):167-175.   Published online May 30, 2016
DOI: https://doi.org/10.5395/rde.2016.41.3.167
AbstractAbstract PDFPubReaderePub
Objectives

Endodontically treated teeth with insufficient tooth structure are often restored with esthetic restorations. This study evaluated the cytotoxicity and biological effects of yttria partially stabilized zirconia (Y-TZP) blocks in combination with several dental cements.

Materials and Methods

Pairs of zirconia cylinders with medium alone or cemented with three types of dental cement including RelyX U200 (3M ESPE), FujiCEM 2 (GC), and Panavia F 2.0 (Kuraray) were incubated in medium for 14 days. The cytotoxicity of each supernatant was determined using 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays on L929 fibroblasts and MC3T3-E1 osteoblasts. The levels of interleukin-6 (IL-6) mRNA were evaluated by reverse transcription polymerase chain reaction (RT-PCR), and IL-6 protein was evaluated by enzyme-linked immunosorbent assays (ELISA). The data were analyzed using one-way ANOVA and Tukey post-hoc tests. A p < 0.05 was considered statistically significant.

Results

The MTT assays showed that MC3T3-E1 osteoblasts were more susceptible to dental cements than L929 fibroblasts. The resin based dental cements increased IL-6 expression in L929 cells, but reduced IL-6 expression in MC3T3-E1 cells.

Conclusions

Zirconia alone or blocks cemented with dental cement showed acceptable biocompatibilities. The results showed resin-modified glass-ionomer based cement less produced inflammatory cytokines than other self-adhesive resin-based cements. Furthermore, osteoblasts were more susceptible than fibroblasts to the biological effects of dental cement.

  • 27 View
  • 0 Download
Close layer
Antimicrobial and cytotoxic activity of Ferula gummosa plant essential oil compared to NaOCl and CHX: a preliminary in vitro study
Abbas Abbaszadegan, Ahmad Gholami, Hosein Mirhadi, Mina Saliminasab, Aboozar Kazemi, Mahmood Reza Moein
Restor Dent Endod 2015;40(1):50-57.   Published online December 26, 2014
DOI: https://doi.org/10.5395/rde.2015.40.1.50
AbstractAbstract PDFPubReaderePub
Objectives

The usage of medicinal plants as natural antimicrobial agents has grown in many fields including dental medicine. The aim of this in vitro study was three-fold: (i) to determine the chemical compositions of the Ferula gummosa essential oil (FGEO), (ii) to compare the antimicrobial efficacy of the oil with sodium hypochlorite (NaOCl) and chlorhexidine (CHX), (iii) to assess the toxic behavior of FGEO in different concentrations compared to 5% NaOCl and 0.2% CHX.

Materials and Methods

Gas chromatography/mass spectrometry (GC/MS) was used to determine the chemical compositions of the oil. The disk diffusion method and a broth micro-dilution susceptibility assay were exploited to assess the antimicrobial efficacy against Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis, and Candida albicans. The cytocompatibility of the FGEO was assessed on L929 fibroblasts, and compared to that of NaOCl and CHX.

Results

Twenty-seven constituents were recognized in FGEO. The major component of the oil was β-pinene (51.83%). All three irrigants significantly inhibited the growth of all examined microorganisms compared to the negative control group. FGEO at 50 µg/mL was effective in lower concentration against Enterococcus faecalis than 5% NaOCl and 0.2% CHX, and was also more potent than 0.2% CHX against Candida albicans and Staphylococcus aureus. FGEO was a cytocompatible solution, and had significantly lower toxicity compared to 5% NaOCl and 0.2% CHX.

Conclusions

FGEO showed a promising biological potency as a root canal disinfectant. More investigations are required on the effectiveness of this oil on intracanal bacterial biofilms.

  • 18 View
  • 0 Download
Close layer
A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength
Minju Song, Yooseok Shin, Jeong-Won Park, Byoung-Duck Roh
Restor Dent Endod 2015;40(1):30-36.   Published online September 26, 2014
DOI: https://doi.org/10.5395/rde.2015.40.1.30
AbstractAbstract PDFPubReaderePub
Objectives

This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers.

Materials and Methods

25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test.

Results

Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S3 Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin.

Conclusions

Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  • 32 View
  • 0 Download
Close layer
Review Article
Biocompatibility of root-end filling materials: recent update
Payal Saxena, Saurabh Kumar Gupta, Vilas Newaskar
Restor Dent Endod 2013;38(3):119-127.   Published online August 23, 2013
DOI: https://doi.org/10.5395/rde.2013.38.3.119
AbstractAbstract PDFPubReaderePub

The purpose of a root-end filling is to establish a seal between the root canal space and the periradicular tissues. As root-end filling materials come into contact with periradicular tissues, knowledge of the tissue response is crucial. Almost every available dental restorative material has been suggested as the root-end material of choice at a certain point in the past. This literature review on root-end filling materials will evaluate and comparatively analyse the biocompatibility and tissue response to these products, with primary focus on newly introduced materials.

  • 33 View
  • 0 Download
Close layer
Research Article
Evaluation of the rat tissue reaction to experimental new resin cement and mineral trioxide aggregate cement
Won-Kyung Yang, Hyun-Jung Ko, Mi-Ri Kim
Restor Dent Endod 2012;37(4):194-200.   Published online November 21, 2012
DOI: https://doi.org/10.5395/rde.2012.37.4.194
AbstractAbstract PDFPubReaderePub
Objectives

New resin cement (NRC) has been developed as a root repairing material and the material is composed of organic resin matrix and inorganic powders. The aim of this study was to compare the rat subcutaneous tissue response to NRC and mineral trioxide aggregate (MTA) cement and to investigate the tissue toxicity of both materials.

Materials and Methods

Sixty rats received two polyethylene tube-implants in dorsal subcutaneous regions, MTA and NRC specimens. Twenty rats were sacrificed respectively at 1, 4 and 8 wk after implantation and sectioned to 5 µm thickness and stained with Hematoxylin-Eosin (H-E) or von-Kossa staining. The condition of tissue adjacent to the implanted materials and the extent of inflammation to each implant were evaluated by two examiners who were unaware of the type of implanted materials in the tissues. Data were statistically analyzed with paired t-test (p < 0.05).

Results

In specimens implanted with both NRC and MTA, severe inflammatory reactions were present at one wk, which decreased with time. At eighth wk, MTA implanted tissue showed mild inflammatory reaction, while there were moderate inflammatory reactions in NRC implanted tissue, respectively. In NRC group, von-Kossa staining showed more calcification materials than MTA group at eighth wk.

Conclusions

It was concluded that the calcium reservoir capability of NRC may contribute to mineralization of the tissues.

  • 25 View
  • 0 Download
Close layer
Basic Researchs
Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells
Choo-Ryung Chung, Euiseong Kim, Su-Jung Shin
J Korean Acad Conserv Dent 2010;35(6):473-478.   Published online November 30, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.6.473
AbstractAbstract PDFPubReaderePub
Objectives

This study was performed to investigate the biocompatibility of newly introduced Bioaggregate on human pulp and PDL cells.

Materials and Methods

Cells were collected from human pulp and PDL tissue of extracted premolars. Cell culture plate was coated either with Bioaggregate or white MTA, then the same number of cells were poured to cell culture dishes. Cell attachment and growth was examined under a phase microscope after 1,3 and 7 days of seeding. Cell viability was measured and the data was analyzed using Student t-test and one way ANOVA.

Results

Both types of cells used in this study were well attached and grew healthy on Bioaggregate and MTA coated culture dishes. No cell inhibition zone was observed in Bioaggregate group. There was no statistical difference of viable cells between bioaggreagte and MTA groups.

Conclusions

Bioaggregate appeared to be biocompatible compared with white MTA on human pulp and PDL cells.

  • 25 View
  • 0 Download
Close layer
Biocompatibility of experimental mixture of mineral trioxide aggregate and glass ionomer cement
Min-Jae Oh, Yu-Na Jeong, In-Ho Bae, So-Young Yang, Bum-Jun Park, Jeong-Tae Koh, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
J Korean Acad Conserv Dent 2010;35(5):359-367.   Published online September 30, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.5.359
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of the present in vitro study was to evaluate the biocompatibility of mineral trioxide aggregate (MTA) mixed with glass ionomer cement (GIC), and to compare it with that of MTA, GIC, IRM and SuperEBA.

Materials and Methods

Experimental groups were divided into 3 groups such as 1 : 1, 2 : 1, and 1 : 2 groups depending on the mixing ratios of MTA powder and GIC powder. Instead of distilled water, GIC liquid was mixed with the powder. This study was carried out using MG-63 cells derived from human osteosarcoma. They were incubated for 1 day on the surfaces of disc samples and examined by scanning electron microscopy. To evaluate the cytotoxicity of test materials quantitatively, XTT assay was used. The cells were exposed to the extracts and incubated. Cell viability was recorded by measuring the optical density of each test well in reference to controls.

Results

The SEM revealed that elongated, dense, and almost confluent cells were observed in the cultures of MTA mixed with GIC, MTA and GIC. On the contrary, cells on the surface of IRM or SuperEBA were round in shape. In XTT assay, cell viability of MTA mixed with GIC group was similar to that of MTA or GIC at all time points. IRM and SuperEBA showed significantly lower cell viability than other groups at all time points (p < 0.05).

Conclusions

In this research MTA mixed with GIC showed similar cellular responses as MTA and GIC. It suggests that MTA mixed with GIC has good biocompatibility like MTA and GIC.

  • 21 View
  • 0 Download
Close layer
Short Communication
Mineral trioxied aggregate and its substitutes
Yong-Bum Cho
J Korean Acad Conserv Dent 2010;35(3):149-151.   Published online May 31, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.3.149
AbstractAbstract PDFPubReaderePub

Since its introduction in 1993, Mineral Trioxide Aggregate (MTA) has been shown to be superior to others in sealing, biocompatibility, and many other aspects of clinical endodontics. MTA is primarily Portland cement with bismuth oxide as a radiopacitifier.

Although some studies suggested that the reasonable-priced Portland cement could be used instead of MTA, but MTAs are different from Portland cement in its composition, especially in heavy metal contents. Therefore, clinicians should be meticulous adapting the Portland cement as a MTA substitute.

  • 18 View
  • 0 Download
Close layer
Original Articles
Comparison of biocompatibility of four root perforation repair materials
Min-Kyung Kang, In-Ho Bae, Jeong-Tae Koh, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
J Korean Acad Conserv Dent 2009;34(3):192-198.   Published online May 31, 2009
DOI: https://doi.org/10.5395/JKACD.2009.34.3.192
AbstractAbstract PDFPubReaderePub

This study was carried out in order to determine in vitro biocompatibility of white mineral trioxide aggregate (MTA), and to compare it with that of the commonly used materials, i. e. calcium hydroxide liner (Dycal), glass ionomer cement (GIC), and Portland cement which has a similar composition of MTA. To assess the biocompatibility of each material, cytotoxicity was examined using MG-63 cells. The degree of cytotoxicity was evaluated by scanning electron microscopy (SEM) and a colorimetric method, based on reduction of the tetrazolium salt 2,3 bis {2methoxy 4nitro 5[(sulfenylamino) carbonyl] 2H tetrazolium hydroxide} (XTT) assay.

The results of SEM revealed the cells in contact with GIC, MTA, and Portland cement at 1 and 3 days were apparently healthy. In contrast, cells in the presence of Dycal appeared rounded and detached. In XTT assay, the cellular activities of the cells incubated with all the test materials except Dycal were similar, which corresponded with the SEM observation. The present study supports the view that MTA is a very biocompatible root perforation repair material. It also suggests that cellular response of Portland cement and GIC are very similar to that of MTA.

  • 21 View
  • 0 Download
Close layer
Enamel adhesion of light- and chemical-cured composites coupled by two step self-etch adhesives
Sae-Hee Han, Eun-Soung Kim, Young-Gon Cho
J Korean Acad Conserv Dent 2007;32(3):169-179.   Published online May 31, 2007
DOI: https://doi.org/10.5395/JKACD.2007.32.3.169
AbstractAbstract PDFPubReaderePub

This study was to compare the microshear bond strength (µSBS) of light- and chemically cured composites to enamel coupled with four 2-step self-etch adhesives and also to evaluate the incompatibility between 2-step self-etch adhesives and chemically cured composite resin.

Crown segments of extracted human molars were cut mesiodistally, and a 1 mm thickness of specimen was made. They were assigned to four groups by adhesives used: SE group (Clearfil SE Bond), AdheSE group (AdheSE), Tyrian group (Tyrian SPE/One-Step Plus), and Contax group (Contax). Each adhesive was applied to a cut enamel surface as per the manufacturer's instruction. Light-cured (Filtek Z250) or chemically cured composite (Luxacore Smartmix Dual) was bonded to the enamel of each specimen using a Tygon tube. After storage in distilled water for 24 hours, the bonded specimens were subjected to µSBS testing with a crosshead speed of 1 mm/minute. The mean µSBS (n=20 for each group) was statistically compared using two-way ANOVA, Tukey HSD, and t test at 95% level. Also the interface of enamel and composite was evaluated under FE-SEM.

The results of this study were as follows;

1. The µSBS of the SE Bond group to the enamel was significantly higher than that of the AdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin (p < 0.05).

2. There was not a significant difference among the AdheSE group, the Tyrian group, and the Contax group in both the light-cured and the chemically cured composite resin.

3. The µSBS of the light-cured composite resin was significantly higher than that of the chemically cured composite resin when same adhesive was applied to the enamel (p < 0.05).

4. The interface of enamel and all 2-step self-etch adhesives showed close adaptation, and so the incompatibility of the chemically cured composite resin did not show.

  • 30 View
  • 1 Download
Close layer
Compatibility of self-etching dentin adhesives with resin luting cements
Do-Wan Kim, Sang-Jin Park, Kyoung-Kyu Choi
J Korean Acad Conserv Dent 2005;30(6):493-504.   Published online November 30, 2005
DOI: https://doi.org/10.5395/JKACD.2005.30.6.493
AbstractAbstract PDFPubReaderePub

This study was performed to investigate the compatibility between 4 dentin adhesives and 4 resin luting cements.

Dentin adhesives used in this study were All-Bond 2 (Bisco Inc., Schaumbrug, IL, USA), Clearfil SE-Bond (Kuraray Medical Inc, Osaka, Japan), Prompt L-Pop (3M Dental Products, St. Paul, MN, USA), One-Up Bond F (Tokuyama corp., Tokyo, Japan). Resin luting cements used in this study were Choice (Bisco Inc., Schaumbrug, IL, USA), Panavia F (Kuraray Medical Inc, Osaka, Japan), RelyX ARC (3M Dental Products, St. Paul, MN, USA), Bistite II DC (Tokuyama corp., Tokyo, Japan). Combination of each dentin adhesive and corresponding resin cement was made to 16 experimental groups.

Flat dentin surfaces was created on mid-coronal dentin of extracted mandibular third molars, then dentin surface was polished with 320-grit silicon carbide abrasive papers.

Indirect resin composite block (Tescera, Bisco) was fabricated. Its surface for bonding to tooth was polished with silicon carbide abrasive papers. Each dentin adhesive was treated on tooth surface and resin composite overlay were luted with each resin cement. Each bonded specimen was poured in epoxy resin and sectioned occluso-gingivally into 1.0 mm thick slab, then further sectioned into 1.0 × 1.0 mm2 composite-dentin beams. Microtensile bond strength was tested at a crosshead speed of 1.0 mm/min. The data were analysed by one-way ANOVA and Duncan's multiple comparison tests.

The results of this study were as follows;

2-step self-etching dentin adhesive which has additional bonding resin is more compatible than 1-step self-etching dentin adhesive.

  • 18 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP