Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Articles

Page Path
HOME > Restor Dent Endod > Volume 45(3); 2020 > Article
Review Article Calcium silicate-based root canal sealers: a literature review
Miyoung Limorcid, Chanyong Jungorcid, Dong-Hoon Shinorcid, Yong-bum Choorcid, Minju Songorcid
Restor Dent Endod 2020;45(3):e35.
DOI: https://doi.org/10.5395/rde.2020.45.e35
Published online: June 9, 2020

Department of Conservative Dentistry, College of Dentistry, Dankook University, Cheonan, Korea.

Correspondence to Minju Song, DDS, MSD, PhD. Assistant Professor, Department of Conservative Dentistry, College of Dentistry, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan 31116, Korea. minju81s@dankook.ac.kr
†Miyoung Lim and Chanyong Jung contributed equally to this work as first authors.
• Received: September 12, 2019   • Revised: October 20, 2019   • Accepted: October 24, 2019

Copyright © 2020. The Korean Academy of Conservative Dentistry

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 1,194 Views
  • 51 Download
  • 70 Crossref
prev next
  • Epoxy resin-based sealers are currently widely used, and several studies have considered AH Plus to be the gold-standard sealer. However, it still has limitations, including possible mutagenicity, cytotoxicity, inflammatory response, and hydrophobicity. Drawing upon the advantages of mineral trioxide aggregate, calcium silicate-based sealers were introduced with high levels of biocompatibility and hydrophilicity. Because of the hydrophilic environment in root canals, water resorption and solubility of root canal sealers are important factors contributing to their stability. Sealers displaying lower microleakage and stronger push-out bond strength are also needed to endure the dynamic tooth environment. Although the physical properties of calcium silicate-based sealers meet International Organization for Standardization recommendations, and they have consistently reported to be biocompatible, they have not overcome conventional resin-based sealers in actual practice. Therefore, further studies aiming to improve the physical properties of calcium silicate-based sealers are needed.
The goal of root canal therapy is to remove and prevent apical periodontitis. To achieve this goal, complete removal of bacteria from the canal is important, as is the choice of filling material [1]. Since gutta-percha was introduced to dentistry as a root canal filling material in the mid-19th century, no significant advancements have been made over the past 170 years except for the introduction of silver cones. Instead, developments in root canal filling materials have focused on the chemical and physical properties of the sealer [2].
Root canal sealers seal off of the root canal system, entombing the remaining bacteria and filling irregularities in the prepared canal. A root canal sealer should display appropriate physicochemical and biological properties. Grossmann suggested that excellent sealing ability, dimensional stability, slow setting time, insolubility, and biocompatibility are required for an ideal root canal sealer [3]. Since the initial development of root canal sealers in the early 20th century, various root canal sealers have been developed to more adequately meet those requirements [2].
Root canal sealers are classified according to their composition as zinc oxide-eugenol (ZOE), calcium hydroxide, glass ionomer, silicone, resin, and bioceramic-based. The sealers included in this review are outlined in Table 1. The earliest, a ZOE-based root canal sealer, was introduced by Rickert in 1931. However, the sealer contained silver, which caused discoloration. In 1958, Grossman introduced a non-staining ZOE sealer as a substitute for Rickert’s formula, and this formula was used for a considerable amount of time. Calcium hydroxide was introduced to endodontics by Herman in 1920 for pulpal repair. It is characterized by its biocompatibility and high pH due to the hydroxyl ion, which induces hard tissue formation and antimicrobial activity. With these advantages, it has been widely used as a pulp capping agent for intracanal medicament and as a root canal sealer. However, calcium hydroxide-based sealers are not physically robust, as demonstrated by their significant leakage [2,4,5].
Table 1

Root canal sealers reviewed in this article and their chemical compositions

Material base Products Manufacturer Composition
ZOE Roth's 801 [M] Roth International, Miami, FL, USA Powder: zinc oxide, staybelite resin, bismuth sub-carbonate, barium sulfate, sodium borate; Liquid: eugenol
Pulp Canal sealer [M] Kerr, Orange, CA, USA Powder: zinc oxide 30%–60%, 5,5′-diisopropyl-2,2′-dimethylbiphenyl-4,4′-diyl dihypoiodite 0.1%–5%; Liquid: eugenol 60%–90%, Canada balsam 10%–30%
Tubli Seal [M] Kerr, Orange, CA, USA Base: zinc oxide 60%–100%, white mineral oil (petroleum) 10%–30%; Accelerator: eugenol 30%–60%, 5,5′-diisopropyl-2,2′-dimethylbiphenyl-4,4′-diyl dihypoiodite 5%–10%
Endo N2 [M] Ghimas, Casalecchio di Reno, Italy Powder: zinc oxide 65.68%, nitrate bismuth 15.17%, carbonate bismuth 10.1%, paraformaldehyde 4%, titanium dioxide 4.76%, red ferric oxide 0.1%, zinc stearate 0.075%, dehydrate zinc acetate 0.075%, yellow ferric oxide 0.04%; Liquid: eugenol 77%, peanut oil 20%, rose oil 1.8%, lavender oil 1.2%
CH Sealapex root canal sealer [M] Kerr, Orange, CA, USA Base: N-ethyl-o (or p)-toluenesulfonamide 30%–60%, calcium oxide 30%–60%, zinc oxide 1%–5%, zinc distearate 1%–5%; Catalyst: methyl salicylate 10%–30%, 2,2 dimethylpropane-1,3-diol 1%–5%, isobutyl salicylate 1%–5%
Apexit Plus [M] Ivoclar Vivadent AG, Schaan, Liechtenstein Base: calcium hydroxide/calcium oxide 36.9%, hydrated colophonium 54%, fillers and other auxiliary materials 9.1%; Activator: disalicylate 47.6%, bismuth hydroxide/bismuth carbonate 36.4%, fillers and other auxiliary materials 16%
ER AH 26 [M] Dentsply DeTrey, Konstanz, Germany Powder: methenamine 25%–50%, titanium dioxide 2.5%–10%, silver 2.5%; Liquid: bisphenol A/epichlorohydrin resin 50%–100%
AH Plus [M] Dentsply DeTrey, Konstanz, Germany Paste A: bisphenol A diglycidylether 25%–50%, bis-[4-(-2,3-epoxypropoxy) phenyl]-methane 2.5%–10%; Paste B: N,N′-dibenzyl-5-oxanonandiamin-1,9 10%–25%, amantadine 2.5%–10%
Acroseal [M] Septodont, Saint-Maur-des-Fossés, France Base: resin acids, hydrogenated 25%–50%, TCD-diamine 10%–25%; Catalyst: bisphenol-A-(epichlorohydrin) epoxy resin 50%–100%, calcium dihydroxide 10%–25%
Easyseal [M] Komet Brasseler, GmbH Co., Lemgo, Germany Paste 1: 4-[-2-(4-hydroxyphenyl) propan-2-yl] phenol-epichlorohydrine resin, alkylglycidyl ether, barium sulfate, tricalcium phosphate, diphenylolpropane-diglycidyl ether; Paste 2: polyalkoxyalkylamine-copolymer, 5-amino-1,3,3-trimethylcyclohexanmethylamine, aqua, barium sulfate, tricalcium phosphate, nanodispers silicone dioxide, polyhexamethylene biguanides-hydrochloride
Theramseal [M] Dentsply Meillefer, Konstanz, Germany Paste A: epoxy resin, calcium tungstate, zirconium oxide, aerosol, iron oxide; Paste B: Adamantane amine, N,N′-dibenzyl-5-oxanonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide aerosol, silicone oil
Topseal [M] Dentsply Meillefer, Ballaigues, Switzerland Paste A: epoxy resin, calcium tungstate, zirconium oxide, aerosol, iron oxide; Paste B: adamantane amine, N,N′-dibenzyl-5-oxanonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide aerosol, silicone oil
MR Endorez [M] Ultradent Product Inc., South Jordan, UT, USA Base: diurethane dimethacrylate > 10 and ≤ 25%, triethylene glycol dimethacrylate > 10 and ≤ 25%, organophosphine oxide ≤ 2.5%, benzoyl peroxide ≤ 2.5%; Catalyst: diurethane dimethacrylate > 25 and ≤ 50%, triethylene glycol dimethacrylate > 10 and ≤ 25%
RealSeal (Eldeniz et al. [59]) SybronEndo, Orange, CA, USA PEGDMA, EBPADMA, EDMA, BisGMA, silane-treated barium borosilicate glasses, barium sulphate, silica, calcium hydroxide, bismuth oxychloride with amines, peroxide, photoinitiator, stabilizers, pigment
RealSeal SE [59] SybronEndo, Orange, CA, USA EBPADMA, HEMA, BisGMA, acidic methacrylate resins, barium borosilicate glasses, silica, hydroxyapatite, Ca-Al-F-silicate, bismuth oxychloride with amines, peroxide, photoinitiator, stabilizers, pigment, aluminium oxide
Hybrid Root Seal [59] Sun Medical, Moriyama, Japan Powder: zirconium oxide filler, SiO2 filler, and polymerization initiators; Liquid: 60% 4-META, 40% HEMA, dimethacrylates
Epiphany (Nawal et al. [91]) Pentron Clinical Technologies, Wallingford, CT, USA UDMA, PEGDMA, EBPADMA, BisGMA, silane-treated barium-borosilicate glasses, barium sulfate, silica, calcium hydroxide, bismuth oxychloride with amines, peroxide, photo initiator, stabilizers, pigment
Silicone GuttaFlow [91] Coltene/Whaledent, DPI, Mumbai, India Paste A (sealer): poly-dimethyl polymethyl hydrogen siloxane, silicone oil, paraffin oil, zirconium dioxide, platin catalyst; Paste B (powder): gutta percha (0.9 μm), zinc oxide, barium sulphate, nanosilver particles (as a preservative)
CP Apatite root sealer (Al-Haddad and Che Ab Aziz ZA [92]) Dentsply Sankin, Tokyo, Japan Powder: alpha tricalcium phosphate, hydroxyapatite, iodoform; Liquid: polyacrylic acid, water
CS iRoot SP [59] Innovative Bioceramix, Vancouver, BC, Canada Zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, filler, thickening agent
MTA Fllapex [M] Angelus, Londrina, PR, Brazil Paste A: salicylate resin, bismuth trioxide, fumed silica; Paste B: fumed silica, titanium dioxide, MTA (40%, tricalcium silicate, dicalcium silicate, calcium oxide, tricalcium aluminate), base resin (pentaerythritol, rosinate, p-toluenesulfonamide)
EndoSequence BC [M] Brasseler, Savannah, GA, USA Zirconium oxide 35%–45%, dicalcium silicate 7%–15%, tricalcium silicate 20%–35%, calcium hydroxide 1%–4%, fillers
TotalFill BC [M] FKG Dentaire, La Chaux-de-Fonds, Switzerland Zirconium oxide 35%–45%, dicalcium silicate 7%–15%, tricalcium silicate 20%–35%, calcium hydroxide 1%–4%, fillers
Bioroot RCS [59] Septodont, Saint-Maur-des-Fossés, France Powder: tricalcium silicate, zirconium oxide and excipients; Aqueous solution: calcium chloride and excipients
Endoseal MTA [M] Maruchi, Wonju, Korea Calcium silicate, calcium aluminates, calcium aluminoferrite, calcium sulfates, radiopacifier, thickening agent
Endo CPM [M] EGEO S.R.L. Bajo Licencia MTM Argentina S.A., Buenos Aires, Argentina MTA: silicon dioxide, calcium carbonate, bismuth trioxide, barium sulfate, propylene glycol alginate, sodium citrate, calcium chloride, active ingredients
Nano Ceramic Sealer (Collado-González et al. [63]) B&L Biotech, Fairfax, VA, USA Calcium silicate, zirconium oxide, filler, thickening agent
ZOE, zinc oxide-eugenol; CH, calcium hydroxide; ER, epoxy resin; MR, methacrylate resin; CP, calcium phosphate; CS, calcium silicate; M, provided from manufacturer; 4‐META, 4‐methacryloxyethyl trimellitic anhydride; HEMA, 2‐hydroxyethyl methacrylate; TCD, tricyclodecane; PEGDMA, polyethylene glycol dimethacrylate; EBPADMA, ethoxylated bisphenol A dimethacrylate; EDMA, 3,4-ethylenedioxy-N-methylamphetamine; BisGMA, bisphenol A-glycidyl methacrylate; UDMA, urethane dimethylate.
Download Table Download Table
Among the clinically available root canal sealers, epoxy resin-based sealers are currently widely used. The prototype of the AH series was introduced by Schroeder in 1957, with excellent physical properties and sealing ability. AH Plus (Dentsply DeTrey, Konstanz, Germany) resolved the problem seen in AH 26-leaching formaldehyde during setting [4,5]. Several studies have considered AH Plus to be the gold standard for sealers, due to its resorption resistance and dimensional stability [6,7,8,9]. However, it has limitations, such as possible mutagenicity [10], cytotoxicity [11,12], and an inflammatory response [13]. In addition, its hydrophobicity prevents the complete filling of the hydrophilic canal. Specifically, defects in AH Plus adhesion to the canal walls can occur due to retained dental moisture [14].
Mineral trioxide aggregate (MTA), a calcium silicate-based hydrophilic cement, was introduced to dentistry in the early 1990s as a material displaying superior biological and physical properties [15,16,17,18]. With its good sealing ability, biocompatibility, and osteoconductivity, it was initially used as a root-end filling material, but is now widely used for various applications, such as root perforation repair, pulp-dentin regeneration, apical barrier formation, pulp capping, pulpotomy, and root canal filling [17,19]. With these excellent properties of calcium silicate-based cements, endodontic sealers based on calcium silicate have been introduced. This kind of sealer sets by reacting with water or under humid conditions. In 2007, the first calcium silicate-based sealer, iRoot SP (Innovative Bioceramix, Vancouver, BC, Canada), was introduced, and displayed biocompatibility and hydrophilicity [20]. Since then, various sealers have been introduced to the market, making various claims but exhibiting small improvements.
Even though various calcium silicate-based root canal sealers are commercially available, some are still in early stages, requiring further laboratory and clinical study. Therefore, in this review, the 5 most studied calcium silicate-based sealers are included: iRoot SP, EndoSequence BC (Brasseler, Savannah, GA, USA), BioRoot RCS (Septodont, Saint-Maur-des -Fossés, France), MTA Fillapex (Angelus, Londrina, PR, Brazil), and Endoseal MTA (Maruchi, Wonju, Korea).
This review aims to summarize the properties of calcium silicate-based sealers and to compare them with those of the resin-based sealer, AH Plus. First, physical properties such as water sorption and solubility, leakage or sealing ability, and push-out bond strength are discussed. Then, biological properties such as biocompatibility, antimicrobial activity, and bioactive potential are presented and compared.
Physical properties

1. Water sorption and solubility

Water sorption and solubility are related to dimensional stability. Table 2 compares the dimensional stability of calcium silicate sealers and conventional sealers. Calcium silicate sealers produce calcium hydroxide by hydration, which affects water sorption and solubility more than is the case for conventional resin-based sealers. The favorable biological properties of calcium silicate sealers result from their solubility or water absorption, but these factors can decrease dimensional stability, with a negative impact on the sealing quality of root canals [20,21,22].
Table 2

Dimensional stability of calcium silicate sealers in the articles included in this review

Material (CS) Method Compared material Dimensional stability
BioRoot RCS Distilled water AH Plus (ER), Pulp Canal Sealer (ZOE), MTA Fillapex (CS) Water sorption: BioRoot RCS > MTA Fillapex > Pulp Canal Sealer > AH Plus (Siboni, et al. [24])
Distilled water Sealapex (CH), AH Plus (ER), EasySeal (ER), Pulp Canal Sealer (ZOE), N2 (ZOE), TotalFill BC (CS), MTA Fillapex (CS) Solubility: TotalFill BC Sealer = BioRoot RCS > MTA Fillapex > N2 = Sealapex > Easyseal > Pulp Canal Sealer > AH Plus (Poggio et al. [31])
PBS, Distilled water AH Plus (ER), MTA Fillapex (CS) Solubility: MTA Fillapex > BioRoot RCS > AH Plus (Urban et al. [22])
Distilled water AH Plus (ER), Sealapex (CH), EasySeal (ER), TotalFill BC (CS), MTA Fillapex (CS) Solubility: TotalFill BC Sealer > BioRoot RCS > MTA Fillapex > Sealapex > Easy Seal > AH Plus (Colombo et al. [32])
PBS, Distilled water AH Plus (ER), MTA Fillapex (CS) Solubility: BioRoot RCS > MTA Fillapex > AH Plus (Prüllage et al. [33])
iRoot SP Distilled water Sealapex (CH), EndoREZ (MR), AH Plus (ER) Water sorption: EndoREZ > iRoot SP > Sealapex > AH Plus; Solubility: Sealapex > iRoot SP = EndoREZ = AH Plus (Ersahan and Aydin [30])
Distilled water AH Plus (ER), Sealapex (CH), MTA-Angelus (CS), MTA Fillapex (CS) Solubility: iRoot SP > MTA Fillapex > Sealapex > MTA Angelus = AH Plus (Borges et al. [28])
EndoSequence BC Distilled water MTA Fillapex (CS), AH Plus (ER), ThermaSeal (ER), GuttaFlow (silicone), Pulp Canal Sealer (ZOE) Solubility: EndoSequence BC sealer > MTA Fillapex > Pulp Canal Sealer > AH Plus > GuttaFlow > ThermaSeal (Zhou et al. [29])
MTA Fillapex Distilled water AH Plus (ER) Solubility, water sorption: AH Plus > MTA Fillapex (Vitti et al. [25])
CS, calcium silicate; ER, epoxy resin; ZOE, zinc oxide-eugenol; CH, calcium hydroxide; MR, methacrylate resin.
Download Table Download Table
Water sorption of calcium silicate sealers promotes slight expansion and promotes sealing [23]. A study reported that BioRoot RCS demonstrated high initial water sorption after setting; however, water sorption decreased 7 days after setting [24]. Only 1 study showed lower water sorption of calcium silicate sealers compared to conventional epoxy resin sealers [25].
The solubility standards of root canal sealers are well described in International Organization for Standardization (ISO) 6876: 2012, according to which sealers should exhibit a solubility of less than 3% weight loss after water immersion [26]. The solubility of calcium silicate-based sealers is higher than that of epoxy resin-based sealers [22, 27,28,29,30,31,32]. In several articles, BioRoot RCS and iRoot SP lost more than 3% weight after water immersion [24,28,31,32]. Ersahan and Aydin [30] reported no significant difference between the solubility of AH Plus and iRoot SP. Only 1 study reported that the solubility of MTA Fillapex was lower than that of AH Plus. However, the authors concluded that both sealers satisfied the ISO 6876: 2012 standard [25]. BioRoot RCS showed less solubility when immersed in phosphate-buffered saline (PBS) than when immersed in distilled water [22,33]. Although ISO 6876: 2012 requires the use of distilled water, it does not predict the sealer’s exact stability in the applicable biological environment. Therefore, some studies have used PBS to provide a better understanding of sealer solubility in biological fluids. In addition, the long-term solubility of BioRoot RCS satisfied the ISO 6876: 2012 requirements when stored in PBS [22].

2. Microleakage

Sealing ability is an important property of a sealer, as one of the goals of root canal therapy is to obtain a bacteria-tight seal of the canals. Wu et al. [34] proposed an experimental model for assessing leakage known as the fluid transport method. It can provide a quantitative measurement of microleakage without destruction of the specimen, and its sensitivity can be adjusted by altering the pressure and diameter of the micropipette.
In contrast, to evaluate dentin penetration, a confocal laser scanning microscopy (CLSM) assay is used. After canal obturation with each sealer, roots are embedded in a self-cure resin and sectioned perpendicular to the long axis of the root. Then, CLSM is used to evaluate the patterns or depth of dentin-penetrating sealer [35]. In the evaluation of dye leakage, each root is immersed in freshly prepared 1% methylene blue dye for 72 hours after canal obturation. Roots are sectioned longitudinally and scored by the depth of dye penetration [36,37].
As shown in Table 3 the sealing ability of calcium silicate sealers varies among studies due to differences in experimental methods and materials. Overall, conventional epoxy resin-based sealers show similar or significantly lower leakage than calcium silicate-based sealers. However, in some leakage studies using the dye penetration method, the leakage of conventional resin-based sealers was significantly higher than that of calcium silicate-based sealers [36,37]. Furthermore, the leakage of calcium silicate sealers and conventional resin sealers may change over time. In a study by Asawaworarit et al. [23], conventional resin-based sealers showed better sealing after 7 days. However, calcium silicate-based sealers showed better sealing at 4 weeks after setting. The authors concluded that the calcium silicate sealer exhibited a better seal after complete setting [23]. Although experimental methods can influence the results, leakage studies can achieve predictable outcomes when standardized techniques, large sample sizes, and proper control groups are used [38].
Table 3

Sealing ability of the calcium silicate sealers in the articles included in this review

Material (CS) Method Compared material Sealing ability
BioRoot RCS Single cone AH 26 (ER) Dentin penetration: BioRoot RCS > AH 26 (Uzunoglu-Özyürek et al. [93])
Lateral compaction AH Plus (ER) μCT void: AH Plus < BioRoot RCS; Fluid transport: BioRoot RCS = AH Plus (Viapiana et al. [94])
Single cone, Continuous wave Endoseal MTA (CS), AH Plus (ER) Dentin penetration: AH Plus > BioRoot RCS > Endoseal (Kim et al. [35])
Endoseal MTA Single cone, Continuous wave AH-Plus (ER), GuttaFlow (silicone) Bacterial leakage: GuttaFlow > Endoseal MTA = AH Plus (Hwang et al. [95])
EndoSequence BC Single cone, Lateral compaction AH 26 (ER), EndoREZ (MR) Fluid transport: AH 26, EndoRez < EndoSequence BC Sealer (Deniz Sungur et al. [96])
Single cone, Continuous wave AH 26 (ER) Endotoxin leakage: EndoSequence BC sealer > AH 26 (Oh et al. [97])
Continuous wave AH Plus (ER), Epiphany (ER), MTA Plus (CS) Dye penetration: EndoSequence BC sealer = Epiphany < AH Plus (Pawar et al. [37])
Lateral compaction Sealapex (CH), AH Plus (ER), EndoREZ (MR) Dye penetration: Endosequence BC sealer < EndoRez < Sealapex = MTA Plus < AH plus (Ballullaya et al. [36])
iRoot SP Lateral compaction Sealapex (CH), EndoREZ (MR), AH Plus (ER) Fluid transport: iRoot SP = AH Plus < EndoREZ = Sealapex (Ersahan and Aydin [30])
Single cone, Continuous wave AH Plus (ER) Fluid transport: iRoot SP = AH Plus (Zhang et al. [48])
Single cone, Continuous wave Topseal (ER) Penentration of sealer: iRoot SP < Topseal; Penetration of sealer: Single-point technique < Continuous wave of condensation (Fernández et al. [49])
Lateral compaction MTA Fillapex (CS) Fluid transport: iRoot SP < MTA Fillapex (Bidar et al. [98])
Lateral compaction Hybrid Root SEAL (MR), EndoREZ (ER), AH Plus (ER) Fluid transport: AH Plus = EndoREZ < iRoot SP < Hybrid Root SEAL (Ulusoy et al. [99])
MTA Fillapex Warm vertical compaction AH Plus (ER) Fluid transport: AH Plus < MTA Fillapex after 7 days, AH Plus > MTA Fillapex after 4 weeks (Asawaworarit et al. [23])
CS, calcium silicate; ER, epoxy resin; μCT, micro-computed tomography; CH, calcium hydroxide; MR, methacrylate resin.
Download Table Download Table
Another characteristic related to the leakage of calcium silicate sealer is biomineralization. Calcium silicate produces a tag-like structure at the calcium silicate/dentin interface. The so-called “mineral infiltration zone” is a hybrid zone where hydroxyapatite recrystallization occurs when calcium silicate is applied in dentin [39]. However, it has not been definitively proven that the mineral infiltration zone affects the outcome of endodontic treatment, positively or negatively [40]. It might positively impact outcomes because calcium ions react with the carbon dioxide in the tissue to form calcite crystals [41]. These crystals can reduce marginal gaps and porosity, and increase the retention of the cement [42,43]. Conversely, in some studies, apatite deposition by a calcium silicate-based sealer did not reduce leakage because of its porous shape [44].
Ethylenediaminetetraacetic acid (EDTA) treatment as the final irrigation can increase the bond strength of epoxy resin-based sealers and decrease leakage [45]. However, the use of EDTA for the final irrigation can disrupt the hydration of calcium silicate, which decreases the hardness and biocompatibility of calcium silicate sealer due to calcium chelation by EDTA [46]. Conversely, using NaOCl for the final irrigation creates an alkaline environment that is suitable for calcium silicate cement hydration and improves the sealing ability of calcium silicate-based sealers [23].
The leakage of calcium silicate-based sealers using different obturation techniques has also been compared. The single cone technique requires a greater amount of sealer than other filling techniques [47,48]. In contrast, Jeong et al. [40] showed that the hygroscopic expansion of calcium silicate-based sealers did not enhance the dentinal penetration depth, and concluded that dentinal penetration was independent of the obturation technique. In addition, a calcium silicate sealer showed similar leakage rates regardless of whether the single cone technique or the continuous wave technique was used [48]. However, in another study, a calcium silicate-based sealer showed better filling when obturated by the continuous wave technique, and not the single cone technique recommended by the manufacturer [49].

3. Push-out bond strength

Push-out bond strength is used to evaluate interfacial bond strength between the root canal sealer and radicular dentin [50,51]. Calcium silicate-based sealers display improved dislocation resistance, as they micromechanically bond to dentin, which decreases the gap at the interface [52]. Some studies showed that calcium silicate sealers had a push-out strength comparable to that of conventional resin-based sealers. However, they generally display a lower push-out bond strength than resin-based sealers that chemically bond to dentin (Table 4).
Table 4

Push-out bond strength of the calcium silicate sealers in the articles included in this review

Material (CS) Method Compared material Push-out bond strength
BioRoot RCS Single cone AH Plus (ER), GuttaFlow2 (silicone) AH Plus > BioRoot RCS > GuttaFlow 2 (Donnermeyer et al. [100])
Endoseal MTA No obturation AH Plus (ER), MTA Fillapex (CS) AH Plus > Endoseal MTA > MTA Fillapex (Silva et al. [101])
EndoSequence BC Lateral compaction, Thermoplasticized injection technology AH Plus (ER), MTA Plus Sealer (CS) AH Plus > EndoSequence BC sealer; lateral compaction > Thermoplasticized injection (Dabaj et al. [55])
Single cone, Continuous wave AH Plus (ER) EndoSequence BC sealer = AH Plus > MTA Plus; Single cone > Continuous wave (DeLong et al. [51])
iRoot SP No obturation AH Plus (ER), EndoREZ (ER), Sealapex (CH) iRoot SP = AH Plus > EndoREZ = Sealapex (Ersahan and Aydin [102])
Single cone RealSeal SE (MR), AH Plus (ER), MTA Fillapex (CS) AH Plus = iRoot SP > MTA Fillapex > RealSeal SE (Nagas et al. [50])
BioRoot RCS No obturation TotalFill BC (CS), AH Plus (ER), Endo CPM (CS) AH Plus > TotalFill BC Sealer > BioRoot RCS > Endo CPM Sealer (Donnermeyer et al. [20,21])
CS, calcium silicate; ER, epoxy resin; CH, calcium hydroxide; MR, methacrylate resin.
Download Table Download Table
The push-out bond strength varies in calcium silicate-based sealers depending on the obturation technique employed. The single cone technique is recommended in each manufacturer's instructions. Sealer properties are affected by the application of heat during warm vertical compaction. Under heated conditions, conventional resin-based sealers exhibit increased film thickness and reduced setting time and strength [53,54]. Heat can accelerate hydration and hydroxyapatite formation in calcium silicate-based root canal sealers [55]. Faster setting times [56] decrease flowability [53] and result in lower bond strength of the calcium silicate-based sealer [55]. In a study by Dabaj et al. [55], a calcium silicate sealer showed a lower bond strength with the thermo-plasticized injectable technique than when cold lateral condensation was used. Residual water in the tubular orifice can be evaporated by heat application, which could result in insufficient hydration. Therefore, calcium silicate-based sealers should be used with the single cone technique, as recommended in the manufacturer's manual.
Biological properties

1. Biocompatibility

Biocompatibility is a requirement for a root canal sealer because the sealer directly contacts the periradicular tissue at the apical and lateral foramina of the root [2]. Most studies analyzed in this review that assessed the cytotoxicity of sealers used mouse and human fibroblast cells or human periodontal ligament cells (PDLCs) [57,58,59,60,61]. Clinically, sealers are inserted into root canals before setting; thus, it is possible that toxic components are released into the tissue [60,62]. Leachable toxic substances could also be released after setting. For this reason, the cytotoxicity of sealers needs to be evaluated both before and after setting.
Generally, calcium silicate sealers have shown higher cell viability than AH Plus (Table 5). However, it cannot be concluded which calcium silicate sealer is the most biocompatible, although BioRoot RCS could be considered more biocompatible than iRoot SP, MTA Fillapex, and Endoseal MTA within the limitations of this review article [32,59,60,61,63]. Despite the similar chemical characteristics of calcium silicate-based sealers, they showed different cytocompatibility [64]. These results were ascribed to differences between commercially available calcium silicate-based sealers, such as unknown filler and thickening agents.
Table 5

Biocompatibility of the calcium silicate sealers in the articles included in this review

Material Cells used Compared material Biocompatibility
iRoot SP L929 mouse fibroblasts AH Plus (ER), ProRoot MTA ProRoot MTA > iRoot SP > AH Plus (Zhang et al. [57])
MG 63 human osteoblast-like cells AH Plus (ER) iRoot SP: non-toxic, AH Plus: slightly cytotoxic (Zhang et al. [85])
hTGSCs ProRoot MTA, Dycal (CH) ProRoot MTA and iRoot SP: no cytotoxicity, Dycal: cytotoxicity (Güven et al. [87])
hPDL Sealapex (CH), Apatite root sealer (CP), MTA Fillapex (CS) None of the sealers were cytotoxic (Chang et al. [58])
EndoSequence BC MC3T3-E1 mouse osteoblast cells AH Plus (ER), Pulp Canal Sealer (ZOE) AH Plus > EndoSequence BC > Pulp Canal Sealer (Loushine et al. [69])
AH Plus (ER), MTA Fillapex (CS) EndoSequence BC, MTA Fillapex > AH plus (Lee et al. [70])
Human gingival fibroblasts MTA Fillapex (CS), AH Plus (ER) EndoSequence BC > AH plus > MTA Fillapex, AH Plus was cytotoxic as freshly mixed (Zhou et al. [65])
Balb/c3T3 mouse fibroblast Endoseal MTA, MTA Fillapex (CS), AH Plus (ER) Endoseal MTA, EndoSequence BC Sealer and AH Plus: similar cell viability, MTA Fillapex sealer: cytotoxic (da Silva et al. [67])
BioRoot RCS hPDL MTA-Fillapex, TotalFill BC (CS), GuttaFlow 2 (siolicone), AH Plus (ER), Roth's 801 (ZOE) GuttaFlow 2 > TotalFill > BioRoot > MTA Fillapex > AH Plus > Roth's 801 (Taraslia et al. [61])
MTA Fillapex (CS), AH Plus (ER), Pulp Canal Sealer (ZOE) Bioroot RCS > AH Plus > MTA Fillapex, Pulp Canal Sealer (Jung et al. [60])
AH Plus Jet, Acroseal (ER), EndoREZ, RealSeal, RealSeal SE, Hybrid Root Seal (MR), iRootSP, MTA Fillapex (CS) BioRoot RCS > iRoot SP > MTA Fillapex > EndoREZ > AH Plus Jet > RealSeal SE > Acroseal > Realseal > Hybrid Root seal (Eldeniz et al. [59])
HGF-1 (ATCC CRL-2014) TotalFill BC, MTA Fillapex (CS), Sealapex (CH), AH Plus, EasySeal (ER), Pulp Canal Sealer, N2 (ZOE) BioRoot RCS, TotalFill BC Sealer and AH Plus: no cytotoxic effects in the first 24 hr, All the other sealers: cytotoxic (Poggio et al. [31])
EasySeal, AH Plus (ER), SealapexTM (CH), MTA Fillapex, TotalFill BC (CS) BioRoot RCS, TotalFill BC > AH Plus, Sealapex TM > EasySeal, MTA Fillapex (Colombo et al. [32])
Human bone marrow mesenchymal stem cells EndoSequence BC (CS), AH Plus (ER) BioRoot RCS, Endosequece BC > AH Plus (Alsubait et al. [103])
Endoseal MTA MC3T3-E1 mouse osteoblast cells ProRoot MTA, AH plus (ER) ProRoot MTA, Endosael MTA > AH Plus (Lim et al. [104])
hPDLSCs Bioroot RCS, Endoseal MTA, Nano Ceramic Sealer (CS) Bioroot RCS, Nano Ceramic Sealer > Endoseal MTA (Collado-González et al. [63])
Human gingival fibroblast AH Plus (ER), MTA Fillapex, BioRoot RCS (CS) MTA Fillapex > Bioroot RCS > AH plus > Endoseal MTA (Kebudi Benezra et al. [64])
MR, methacrylate resin; ER, epoxy resin; hTGSC, human tooth germ stem cell; CH, calcium hydroxide; hPDL, human periodontal ligament; CP, calcium phosphate; ZOE, zinc oxide-eugenol; CS, calcium silicate; HGF-1, human gingival fibroblast; hPDLSC, human periodontal ligament stem cell.
Download Table Download Table
However, MTA Fillapex showed the least biocompatibility among the calcium silicate sealers [32,59,60,61,65] except in 2 articles [58,64], as well as significant cytotoxicity [66,67]. The main component of MTA Fillapex is salicylate resin, which has shown considerable cytotoxicity and prolongation of setting [68], contributing to increased dissolution of toxic materials. MTA Fillapex was found to be more soluble than AH Plus even after setting [33]. However, according to the recent study of Kebudi et al. [64], MTA Fillapex enhanced cell attachment and proliferation, in contrast to previous studies; these findings were suggested to be due to a compositional change in the re-launched material, with calcium tungstate substituted for bismuth oxide.
While most studies have shown that calcium silicate sealers are biocompatible and non-cytotoxic, several reports have found the contrary. Loushine et al. [69] reported that EndoSequence BC was cytotoxic to mouse osteoblast cells for 6 weeks, and Endoseal MTA was reported not to promote the growth of human gingival fibroblasts on its surface [64]. In vitro methods such as direct testing on the surface of the sealer, and cell culture of extract from the sealer or transwell inserts including it [64,65,69], could yield different results. The cell line chosen to test the biocompatibility also greatly influences the results [63]. Fortunately, the results reported from different studies in this review are consistent, regardless of the cell line that was used. On the contrary, 2 separate investigations of EndoSequence BC reported differences in biocompatibility, even though the same mouse osteoblast cell line was used [69,70]. This difference may be related to differences in experimental conditions.

2. Antibacterial effects

Complete elimination of microbes from the root canal system is impossible. Thus, the use of root canal sealers with antibacterial effects is essential for the prevention of intracanal infections or bacterial invasion due to microleakage [71,72]. Enterococcus faecalis is the most frequently isolated microorganism from infected root canals, especially in recurrent infections after root canal treatment [73]. Therefore, most studies have evaluated the antibacterial effect of sealers against E. faecalis.
Previous research has shown that the antimicrobial properties of root canal sealers depend upon their alkalinity [74]. The alkalinity of calcium silicate sealers is higher than that of AH Plus. The highest pH values were observed in iRoot SP, EndoSequence BC, and Endo CPM, followed by MTA Fillapex and Endoseal MTA [75]. In addition, hydrophilicity and calcium hydroxide diffusion also affect antimicrobial properties. Hydrophilicity reduces the contact angle of the sealer and increases sealer penetration into the dentinal tubule [71]. Calcium hydroxide diffusion helps to deliver the hydroxyl ion through the root canal, including the dentinal tubules, fins, isthmuses, lateral canals, and accessory canals, where residual microbes may be located [76].
The agar diffusion test [77,78] and the direct contact test are commonly used to evaluate the antimicrobial activity of root canal sealers [71,77]. Recently, CLSM has been introduced to evaluate the penetration of microorganisms, which can be observed by fluorescent-staining cells in the dentinal tubule after root canal filling [78,79,80]. The antimicrobial effects of calcium silicate sealers depend on the material, method, and time, as they decrease after setting.
Most calcium silicate sealers showed antibacterial effects against E. faecalis (Table 6) [32,71,77,78,79,80,81,82]. For iRoot SP, all bacteria were eradicated directly after contact, whereas for AH Plus, the viable bacteria were significantly reduced and eradicated within 5–20 minutes. However, after 7 days, most sealers had lost their antibacterial effect [71]. BioRoot RCS showed stronger antibacterial effects than AH Plus in several studies [32,78,80], and its effects lasted for 30 days [80]. However, EndoSequence BC showed antibacterial effects in 2 articles and no effect in 1 other article that we reviewed [79,82,83]. The discrepancy in these results may stem from differences in the testing method. There were only 3 articles about the antibacterial activity of Endosequence BC; therefore, further evaluation is needed. Endoseal MTA showed a stronger antibacterial effect against E. faecalis than EndoSequence BC, due to higher levels of metal oxides, such as Na2O, MgO, Al2O3, SO2, and Fe2O [82]. However, only 1 report has dealt with the antibacterial effects of Endoseal MTA; as such, the limitations of our knowledge mean that further studies are required for a definitive assessment.
Table 6

Antibacterial effects on Enterococcus faecalis of the various calcium silicate sealers in the articles included in this review

Material Compared material (based material) Test method Sealer setting Evaluation time Antibacterial effect against E. faecalis
iRoot SP AH Plus (ER), Epiphany, EndoRez (MR), Apexit Plus, Sealapex (CH), Tubli Seal EWT (ZOE) DCT Fresh, 1, 3, and 7 days 2–60 min Fresh: iRoot SP, AH Plus, EndoRez, Sealapex, Epiphany; 1 day and 3 days: iRoot SP, EndoRez > Sealapex, Epiphany; 7 days: EndoRez, Sealapex (Zhang et al. [71])
AH Plus (ER), Tubliseal EWT (ZOE), EndoRez (MR) DCT 20 min Every 30 min up to 18 hr AH Plus, iRoot SP (Nirupama et al. [81])
EndoSequence BC AH Plus (ER) ADT Fresh 48 hr AH Plus > EndoSequence BC (Candeiro et al. [77])
DCT Fresh 1, 24, 72, 168 hr AH Plus > EndoSequence BC up to 1 hr, after 1 hr, similar effects [77]
AH Plus (ER), Pulp Canal Sealer (ZOE) CLSM Fresh 1, 7, 30 days EndoSequence BC, AH Plus > Pulp Canal Sealer (Wang et al. [79])
GuttaFlow (silicone), Pulp Canal Sealer (ZOE), AH Plus Jet (ER) SEM 24 hr 24 hr Pulp Canal Sealer (Willershausen et al. [83])
BioRootRCS MTA Fillapex (CS), AH Plus (ER) ADT 24 hr 24 hr Bioroot RCS, AH Plus > MTA Fillapex (Arias-Moliz and Camilleri [78])
CLSM 24 hr 7 days BioRoot RCS > MTA Fillapex > AH Plus [78]
TotalFill BC (CS), AH Plus (ER) CLSM Fresh 1, 7, 30 days BioRoot RCS > TotalFill BC, AH Plus after 30 days (Alsubait et al. [80])
EasySeal, AH Plus (ER), SealapexTM (CH), TotalFill BC, MTA Fillapex (CS) ADT Fresh 48 hr EasySeal > AH Plus > BioRoot RCS, Sealapex, MTA Fillapex (Colombo et al. [32])
DCT 7 day 6, 15, 60 min 6 min: TotalFill BC, Easyseal > Bioroot RCS > MTA Fillapex
15, 60 min: BioRoot RCS, TotalFill BC, EasySeal > MTA Fillapex, Sealapex > AH Plus (Colombo et al. [32])
Endoseal MTA AH Plus (ER), Sealapex (CH), Tubli-Seal (ZOE), EndoSequence BC (CS) DCT Before and after setting 24 hr Endoseal MTA > Sealapex > TubliSeal > AH Plus > EndoSequence BC
All sealers had less effect after setting (Shin et al. [82])
ER, epoxy resin; MR, methacrylate resin; CH, calcium hydroxide; ZOE, zinc oxide-eugenol; DCT, direct contact test; ADT, agar diffusion test; CLSM, confocal laser scanning microscopy; SEM, scanning electron microscopy; CS, calcium silicate.
Download Table Download Table
Calcium silicate sealers showed similar or stronger antibacterial effects than AH Plus, particularly BioRoot RCS [32,80]. The weak antibacterial effect of AH Plus against E. faecalis is ascribed to its lower alkalinity than calcium silicate-containing sealers.

3. Bioactivity

Bioactive materials are bone-bonding materials that form bone-like apatite upon immersion in a serum-like solution [84]. Similarly, calcium silicate-based sealers are considered to be bioactive materials because they can induce hard tissue formation in both the periodontal ligament (PDL) and bone [85,86]. Bioactive properties can be evaluated through osteogenic differentiation and mineralization potential. These properties have been assessed in terms of alkaline phosphatase activity, alizarin red staining, and mineralization-related gene expression [58,70,87,88].
Most research has concluded that calcium silicate sealers show stronger bioactive effects on PDL, osteoblasts, and stem cells than other sealers. As shown in Table 7, calcium silicate sealers improve the expression of osteoblastic marker genes and induce an higher amount of mineralization matrix than other types of sealers [24,58,70,85,86,87,88,89,90].
Table 7

Bioactivity of the calcium silicate sealers in the articles included in this review

Material Compared material Cells used Mineralization potential
iRoot SP AH Plus (ER) MG 63 human osteoblast-like cells COL 1, OCN and BSP mRNA expression up-regulation: iRoot SP > AH Plus (Zhang et al. [85])
ProRoot MTA, Dycal (CH) hTGSCs COL 1A and DSPP mRNA expression: MTA > iRoot SP (Güven et al. [87])
Sealapex (CH), Apatite root sealer (CP), MTA Fillapex (CS) Human PDL cells ALP, mineralization nodule up-regulation: all sealers except for Sealapex; ON, OPN, OCN, Osterix, Runx2: MTA Fillapex > Apatitie root sealer > iRoot SP > Sealapex (Chang et al. [58])
EndoSequence BC AH Plus (ER), MTA Fillapex (CS) MC3T3-E1 mouse osteoblast cells All sealers increased ALP, OCN and alizarin red staining mineral: Calcium silicate sealers > AH Plus (Lee et al. [70])
BioRoot RCS Pulp Canal Sealer (ZOE) hPDL, Mouse pulp-derived stem cell line A4 BMP2, TGF2: BioRoot RCS > Pulp Canal Sealer (Camps et al. [86]); VEGF: BioRoot = Pulp Canal Sealer (Camps et al. [86]); COL1, DMP1, BSP expression: BioRoot RCS preserved the intrinsic ability, but Pulp Canal Sealer reduced the ability (Dimitrova-Nakov et al. [89])
AH Plus (ER), MTA Fillapex (CS), Pulp Canal Sealer (ZOE) Calcium release, pH, nucleation of CaP after aging 28 day BioRoot RCS > MTA Fillapex > AH Plus > Pulp Canal Sealer (Siboni et al. [24])
Biodentine Human dental pulp stem cell Both of them; Mineralization matrix induction: up-regulation; ALP, COL A1, OPN: down-regulation; Runx2: unmodified; Nestin, Msx2: up-regulation; DSPP expressed in direct contact with Biodentine, but BioRoot RCS needed mineralizing conditions, i.e., phosphate ions (Loison-Robert et al. [88])
Endoseal MTA ProRoot MTA Intratubular biomineralization Endoseal MTA enhanced biomineralization of dentinal tubules (Yoo et al. [90])
ER, epoxy resin; COL, collagen; OCN, osteocalcin; BSP, bone sialoprotein; CH, calcium hydroxide; hTGSC, human tooth germ stem cell; DSPP, dentin sialophosphoprotein; CP, calcium phosphate; CS, calcium silicate; PDL, periodontal ligament; ALP, alkaline phosphatase; ON, osteonectin; OPN, osteopontin; Runx, runt-related transcription factor; ZOE, zinc oxide-eugenol; hPDL, human periodontal ligament; BMP, bone morphogenic protein; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; DMP, dentin matrix protein; BSP, bone sialoprotein; CaP, calcium phosphate; Msx, msh homeobox.
Download Table Download Table
iRoot SP induces human tooth germ stem cell differentiation into odontoblast-like cells [87], and further induces osteoblast-like cells to produce more mineralized matrix gene and protein expression [85]. However, iRoot SP has less inductive potential and hard tissue deposition compared to ProRoot MTA [87]. Apatite Root Sealer, MTA Fillapex, and iRoot SP demonstrated osteogenic potential through osteoblastic differentiation of PDLCs compared with Sealapex [58]. BioRoot RCS had higher bioactivity than ZOE sealers on mouse pulp-derived stem cells and human PDLCs [86,89]. Human dental pulp stem cells also showed significantly increased mineralization in the presence of BioRoot RCS [88]. The osteogenic potential of calcium silicate sealers seems to be higher than that of AH Plus. Calcium release from calcium silicate sealers is thought to promote osteoblastic differentiation and calcium nodule formation [24,70,85].
Studies have also been conducted regarding direct mineral deposition. When the surfaces of sealers immersed in Hank's balanced salt solution were examined with elemental dispersive X-ray microanalysis, BioRoot RCS induced carbonated apatite deposits, with a prolonged ability to release calcium ions and alkalization [24]. In addition, when the root canal was obturated with GP and Endoseal MTA sealer, the biomineralization of the dentinal tubules was confirmed by observations using scanning electron microscopy and energy-dispersive spectroscopy [90]. Therefore, it can be concluded that calcium silicate-based sealers are bioactive and stimulate hard tissue formation.
Endodontic sealers are used to seal minor discrepancies between the dentinal wall of the root canal and the root filling material, including irregularities in the apical foramen and canal. Therefore, the physical properties of root canal sealers have a major impact on the quality of the root canal filling. Due to the hydrophilic environment of root canals, water resorption and the solubility of root canal sealers are important factors for their 3-dimensional stability.
Minimal microleakage of the sealer and high push-out bond strength are needed to endure the dynamic tooth environment. Although these physical properties of calcium silicate-based sealers meet ISO recommendations, they are either less favorable or comparable to conventional resin-based sealers. However, calcium silicate-based sealers have consistently been reported to be biocompatible, non-cytotoxic, and non-genotoxic. They show good antimicrobial properties that are comparable to those of epoxy resin sealers. Above all, calcium silicate-based sealers are bioactive and stimulate hard tissue formation, which is the main advantage of this material.
Even though the biological properties of calcium silicate-based sealers are adequate, further investigations into ways of improving their physical properties are needed.

Funding: This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2019R1C1C1003240).

Conflict of Interest: No potential conflict of interest relevant to this article was reported.

Author Contributions:

  • Conceptualization: Lim M, Jung C.

  • Data curation: Lim M, Jung C.

  • Funding acquisition: Song M.

  • Investigation: Lim M, Jung C.

  • Methodology: Lim M, Jung C, Song M.

  • Project administration: Lim M, Jung C, Song M.

  • Resources: Lim M, Jung C, Song M.

  • Supervision: Cho YB, Shin DH.

  • Writing - original draft: Lim M, Jung C, Song M.

  • Writing - review & editing: Cho YB, Shin DH, Song M.

  • 1. Schilder H. Filling root canals in three dimensions. 1967. J Endod 2006;32:281-290.PubMed
  • 2. Ørstavik D. Materials used for root canal obturation: technical, biological and clinical testing. Endod Topics 2005;12:25-38.Article
  • 3. Grossman L. Endodontic practice. 10th ed. Philadelphia (PA): Henry Kimpton Publishers; 1981.
  • 4. Manappallil JJ. Basic dental materials. 4th ed. New Delhi: Jaypee Brothers Medical Publishers; 2015.
  • 5. Berman LH, Hargreaves K, Cohen S. Cohen's pathways of the pulp expert consult. 10th ed. Maryland Heights (MO): Mosby Elsevier; 2010.
  • 6. Garrido AD, Lia RC, França SC, da Silva JF, Astolfi-Filho S, Sousa-Neto MD. Laboratory evaluation of the physicochemical properties of a new root canal sealer based on Copaifera multijuga oil-resin. Int Endod J 2010;43:283-291.ArticlePubMed
  • 7. Lee JK, Kwak SW, Ha JH, Lee W, Kim HC. Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg Chem Appl 2017;2017:2582849.ArticlePubMedPMCPDF
  • 8. Poggio C, Arciola CR, Dagna A, Colombo M, Bianchi S, Visai L. Solubility of root canal sealers: a comparative study. Int J Artif Organs 2010;33:676-681.ArticlePubMedPDF
  • 9. McMichen FR, Pearson G, Rahbaran S, Gulabivala K. A comparative study of selected physical properties of five root-canal sealers. Int Endod J 2003;36:629-635.ArticlePubMedPDF
  • 10. Schweikl H, Schmalz G, Federlin M. Mutagenicity of the root canal sealer AHPlus in the Ames test. Clin Oral Investig 1998;2:125-129.ArticlePubMedPDF
  • 11. Azar NG, Heidari M, Bahrami ZS, Shokri F. In vitro cytotoxicity of a new epoxy resin root canal sealer. J Endod 2000;26:462-465.ArticlePubMed
  • 12. Cohen BI, Pagnillo MK, Musikant BL, Deutsch AS. An in vitro study of the cytotoxicity of two root canal sealers. J Endod 2000;26:228-229.ArticlePubMed
  • 13. Sousa CJ, Montes CR, Pascon EA, Loyola AM, Versiani MA. Comparison of the intraosseous biocompatibility of AH Plus, EndoREZ, and Epiphany root canal sealers. J Endod 2006;32:656-662.ArticlePubMed
  • 14. Roggendorf MJ, Ebert J, Petschelt A, Frankenberger R. Influence of moisture on the apical seal of root canal fillings with five different types of sealer. J Endod 2007;33:31-33.ArticlePubMed
  • 15. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303.ArticlePubMed
  • 16. Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med 2006;17:187-191.ArticlePubMedPDF
  • 17. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.ArticlePubMed
  • 18. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541-544.ArticlePubMed
  • 19. Darvell BW, Wu RC. “MTA”-an Hydraulic Silicate Cement: review update and setting reaction. Dent Mater 2011;27:407-422.ArticlePubMed
  • 20. Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology 2019;107:421-436.ArticlePubMedPDF
  • 21. Donnermeyer D, Dornseifer P, Schäfer E, Dammaschke T. The push-out bond strength of calcium silicate-based endodontic sealers. Head Face Med 2018;14:13.ArticlePubMedPMCPDF
  • 22. Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod 2018;44:1736-1740.ArticlePubMed
  • 23. Asawaworarit W, Yachor P, Kijsamanmith K, Vongsavan N. Comparison of the apical sealing ability of calcium silicate-based sealer and resin-based sealer using the fluid-filtration technique. Med Princ Pract 2016;25:561-565.ArticlePubMedPMCPDF
  • 24. Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J 2017;50(Suppl 2):e120-e136.ArticlePubMedPDF
  • 25. Vitti RP, Prati C, Silva EJ, Sinhoreti MA, Zanchi CH, de Souza e Silva MG, Ogliari FA, Piva E, Gandolfi MG. Physical properties of MTA Fillapex sealer. J Endod 2013;39:915-918.ArticlePubMed
  • 26. International Organization of Standardization. International Standard ISO 6876. Specification for dental root canal sealing materials. 3rd ed. Geneva: International Organization of Standardization; 2012.
  • 27. Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Influence of environment on testing of hydraulic sealers. Sci Rep 2017;7:17927.PubMedPMC
  • 28. Borges RP, Sousa-Neto MD, Versiani MA, Rached-Júnior FA, De-Deus G, Miranda CE, Pécora JD. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J 2012;45:419-428.ArticlePubMed
  • 29. Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod 2013;39:1281-1286.ArticlePubMed
  • 30. Ersahan S, Aydin C. Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol Scand 2013;71:857-862.ArticlePubMed
  • 31. Poggio C, Dagna A, Ceci M, Meravini MV, Colombo M, Pietrocola G. Solubility and pH of bioceramic root canal sealers: a comparative study. J Clin Exp Dent 2017;9:e1189-e1194.ArticlePubMedPMC
  • 32. Colombo M, Poggio C, Dagna A, Meravini MV, Riva P, Trovati F, Pietrocola G. Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent 2018;10:e120-e126.ArticlePubMedPMC
  • 33. Prüllage RK, Urban K, Schäfer E, Dammaschke T. Material properties of a tricalcium silicate-containing, a mineral trioxide aggregate-containing, and an epoxy resin-based root canal sealer. J Endod 2016;42:1784-1788.ArticlePubMed
  • 34. Wu MK, De Gee AJ, Wesselink PR, Moorer WR. Fluid transport and bacterial penetration along root canal fillings. Int Endod J 1993;26:203-208.ArticlePubMed
  • 35. Kim Y, Kim BS, Kim YM, Lee D, Kim SY. The penetration ability of calcium silicate root canal sealers into dentinal tubules compared to conventional resin-based sealer: a confocal laser scanning microscopy study. Materials (Basel) 2019;12:E531.Article
  • 36. Ballullaya SV, Vinay V, Thumu J, Devalla S, Bollu IP, Balla S. Stereomicroscopic dye leakage measurement of six different root canal sealers. J Clin Diagn Res 2017;11:ZC65-ZC68.ArticlePubMedPMC
  • 37. Pawar SS, Pujar MA, Makandar SD. Evaluation of the apical sealing ability of bioceramic sealer, AH plus & epiphany: an in vitro study. J Conserv Dent 2014;17:579-582.ArticlePubMedPMC
  • 38. Jafari F, Jafari S. Importance and methodologies of endodontic microleakage studies: a systematic review. J Clin Exp Dent 2017;9:e812-e819.ArticlePubMedPMC
  • 39. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 2012;91:454-459.ArticlePubMedPMCPDF
  • 40. Jeong JW, DeGraft-Johnson A, Dorn SO, Di Fiore PM. Dentinal tubule penetration of a calcium silicate-based root canal sealer with different obturation methods. J Endod 2017;43:633-637.ArticlePubMed
  • 41. Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabé PF, Dezan Júnior E. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25:161-166.ArticlePubMed
  • 42. Gandolfi MG, Prati C. MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term study of sealing ability. Int Endod J 2010;43:889-901.ArticlePubMed
  • 43. Iacono F, Gandolfi MG, Huffman B, Sword J, Agee K, Siboni F, Tay F, Prati C, Pashley D. Push-out strength of modified Portland cements and resins. Am J Dent 2010;23:43-46.PubMed
  • 44. Weller RN, Tay KC, Garrett LV, Mai S, Primus CM, Gutmann JL, Pashley DH, Tay FR. Microscopic appearance and apical seal of root canals filled with gutta-percha and ProRoot Endo Sealer after immersion in a phosphate-containing fluid. Int Endod J 2008;41:977-986.ArticlePubMed
  • 45. Neelakantan P, Subbarao C, Subbarao CV, De-Deus G, Zehnder M. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J 2011;44:491-498.ArticlePubMed
  • 46. Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP. Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. J Dent Res 2007;86:534-538.ArticlePubMedPDF
  • 47. Wu MK, Bud MG, Wesselink PR. The quality of single cone and laterally compacted gutta-percha fillings in small and curved root canals as evidenced by bidirectional radiographs and fluid transport measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:946-951.ArticlePubMed
  • 48. Zhang W, Li Z, Peng B. Assessment of a new root canal sealer's apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e79-e82.ArticlePubMed
  • 49. Fernández R, Restrepo JS, Aristizábal DC, Álvarez LG. Evaluation of the filling ability of artificial lateral canals using calcium silicate-based and epoxy resin-based endodontic sealers and two gutta-percha filling techniques. Int Endod J 2016;49:365-373.ArticlePubMed
  • 50. Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res 2014;28:S1806-83242014000100256.ArticlePubMed
  • 51. DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. J Endod 2015;41:385-388.ArticlePubMed
  • 52. Reyes-Carmona JF, Felippe MS, Felippe WT. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod 2010;36:286-291.ArticlePubMed
  • 53. Camilleri J. Sealers and warm gutta-percha obturation techniques. J Endod 2015;41:72-78.ArticlePubMed
  • 54. Viapiana R, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Camilleri J. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source. J Endod 2014;40:555-561.ArticlePubMed
  • 55. Dabaj P, Kalender A, Unverdi Eldeniz A. Push-out bond strength and SEM evaluation in roots filled with two different techniques using new and conventional sealers. Materials (Basel) 2018;11:E1620.ArticlePubMedPMC
  • 56. Qu W, Bai W, Liang YH, Gao XJ. Influence of warm vertical compaction technique on physical properties of root canal sealers. J Endod 2016;42:1829-1833.ArticlePubMed
  • 57. Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J 2010;43:769-774.ArticlePubMed
  • 58. Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod 2014;40:1642-1648.ArticlePubMed
  • 59. Eldeniz AU, Shehata M, Högg C, Reichl FX. DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J 2016;49:1141-1151.PubMed
  • 60. Jung S, Libricht V, Sielker S, Hanisch MR, Schäfer E, Dammaschke T. Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo . Odontology 2019;107:54-63.ArticlePubMedPDF
  • 61. Taraslia V, Anastasiadou E, Lignou C, Keratiotis G, Agrafioti A, Kontakiotis EG. Assessment of cell viability in four novel endodontic sealers. Eur J Dent 2018;12:287-291.ArticlePubMedPMC
  • 62. Ames JM, Loushine RJ, Babb BR, Bryan TE, Lockwood PE, Sui M, Roberts S, Weller RN, Pashley DH, Tay FR. Contemporary methacrylate resin-based root canal sealers exhibit different degrees of ex vivo cytotoxicity when cured in their self-cured mode. J Endod 2009;35:225-228.ArticlePubMed
  • 63. Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 2017;50:875-884.ArticlePubMedPDF
  • 64. Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Interfacial characteristics and cytocompatibility of hydraulic sealer cements. J Endod 2018;44:1007-1017.ArticlePubMed
  • 65. Zhou HM, Du TF, Shen Y, Wang ZJ, Zheng YF, Haapasalo M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod 2015;41:56-61.ArticlePubMed
  • 66. Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent 2017;9:e574-e578.ArticlePubMedPMC
  • 67. da Silva EJ, Zaia AA, Peters OA. Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model. Clin Oral Investig 2017;21:1531-1536.ArticlePubMedPDF
  • 68. Portella FF, Collares FM, Dos Santos LA, dos Santos BP, Camassola M, Leitune VC, Samuel SM. Glycerol salicylate-based containing α-tricalcium phosphate as a bioactive root canal sealer. J Biomed Mater Res B Appl Biomater 2015;103:1663-1669.ArticlePubMed
  • 69. Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod 2011;37:673-677.ArticlePubMed
  • 70. Lee BN, Hong JU, Kim SM, Jang JH, Chang HS, Hwang YC, Hwang IN, Oh WM. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers. J Endod 2019;45:73-78.ArticlePubMed
  • 71. Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis . J Endod 2009;35:1051-1055.ArticlePubMed
  • 72. Sjögren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 1997;30:297-306.ArticlePubMed
  • 73. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32:93-98.ArticlePubMed
  • 74. Desai S, Chandler N. Calcium hydroxide-based root canal sealers: a review. J Endod 2009;35:475-480.ArticlePubMed
  • 75. Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: a review article. J Clin Exp Dent 2017;9:e1249-e1255.ArticlePubMedPMC
  • 76. Cai M, Abbott P, Castro Salgado J. Hydroxyl ion diffusion through radicular dentine when calcium hydroxide is used under different conditions. Materials (Basel) 2018;11:E152.Article
  • 77. Candeiro GT, Moura-Netto C, D'Almeida-Couto RS, Azambuja-Júnior N, Marques MM, Cai S, Gavini G. Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J 2016;49:858-864.ArticlePubMedPDF
  • 78. Arias-Moliz MT, Camilleri J. The effect of the final irrigant on the antimicrobial activity of root canal sealers. J Dent 2016;52:30-36.ArticlePubMed
  • 79. Wang Z, Shen Y, Haapasalo M. Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod 2014;40:505-508.ArticlePubMed
  • 80. Alsubait S, Albader S, Alajlan N, Alkhunaini N, Niazy A, Almahdy A. Comparison of the antibacterial activity of calcium silicate- and epoxy resin-based endodontic sealers against Enterococcus faecalis biofilms: a confocal laser-scanning microscopy analysis. Odontology 2019;107:513-520.ArticlePubMedPDF
  • 81. Nirupama DN, Nainan MT, Ramaswamy R, Muralidharan S, Usha HH, Sharma R, Gupta S. In vitro evaluation of the antimicrobial efficacy of four endodontic biomaterials against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus . Int J Biomater 2014;2014:383756.ArticlePubMedPMCPDF
  • 82. Shin JH, Lee DY, Lee SH. Comparison of antimicrobial activity of traditional and new developed root sealers against pathogens related root canal. J Dent Sci 2018;13:54-59.ArticlePubMedPMC
  • 83. Willershausen I, Callaway A, Briseño B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med 2011;7:15.ArticlePubMedPMCPDF
  • 84. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-2915.ArticlePubMed
  • 85. Zhang W, Li Z, Peng B. Effects of iRoot SP on mineralization-related genes expression in MG63 cells. J Endod 2010;36:1978-1982.ArticlePubMed
  • 86. Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro . J Endod 2015;41:1469-1473.ArticlePubMed
  • 87. Güven EP, Taşlı PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 2013;46:1173-1182.ArticlePubMed
  • 88. Loison-Robert LS, Tassin M, Bonte E, Berbar T, Isaac J, Berdal A, Simon S, Fournier BP. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS One 2018;13:e0190014.ArticlePubMedPMC
  • 89. Dimitrova-Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann O, Goldberg M. In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells. Dent Mater 2015;31:1290-1297.ArticlePubMed
  • 90. Yoo YJ, Baek SH, Kum KY, Shon WJ, Woo KM, Lee W. Dynamic intratubular biomineralization following root canal obturation with pozzolan-based mineral trioxide aggregate sealer cement. Scanning 2016;38:50-56.ArticlePubMedPDF
  • 91. Nawal RR, Parande M, Sehgal R, Naik A, Rao NR. A comparative evaluation of antimicrobial efficacy and flow properties for Epiphany, Guttaflow and AH-Plus sealer. Int Endod J 2011;44:307-313.ArticlePubMed
  • 92. Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: a review. Int J Biomater 2016;2016:9753210.ArticlePubMedPMCPDF
  • 93. Uzunoglu-Özyürek E, Erdoğan Ö, Aktemur Türker S. Effect of calcium hydroxide dressing on the dentinal tubule penetration of 2 different root canal sealers: a confocal laser scanning microscopic study. J Endod 2018;44:1018-1023.ArticlePubMed
  • 94. Viapiana R, Moinzadeh AT, Camilleri L, Wesselink PR, Tanomaru Filho M, Camilleri J. Porosity and sealing ability of root fillings with gutta-percha and BioRoot RCS or AH Plus sealers. Evaluation by three ex vivo methods. Int Endod J 2016;49:774-782.PubMed
  • 95. Hwang JH, Chung J, Na HS, Park E, Kwak S, Kim HC. Comparison of bacterial leakage resistance of various root canal filling materials and methods: confocal laser-scanning microscope study. Scanning 2015;37:422-428.ArticlePubMedPDF
  • 96. Deniz Sungur D, Moinzadeh AT, Wesselink PR, Çalt Tarhan S, Özok AR. Sealing efficacy of a single-cone root filling after post space preparation. Clin Oral Investig 2016;20:1071-1077.ArticlePubMedPDF
  • 97. Oh S, Cho SI, Perinpanayagam H, You J, Hong SH, Yoo YJ, Chang SW, Shon WJ, Yoo JS, Baek SH, Kum KY. Novel calcium zirconate silicate cement biomineralize and seal root canals. Materials (Basel) 2018;11:E588.ArticlePubMedPMC
  • 98. Bidar M, Sadeghalhoseini N, Forghani M, Attaran N. Effect of the smear layer on apical seals produced by two calcium silicate-based endodontic sealers. J Oral Sci 2014;56:215-219.ArticlePubMed
  • 99. Ulusoy OI, Nayir Y, Celik K, Yaman SD. Apical microleakage of different root canal sealers after use of maleic acid and EDTA as final irrigants. Braz Oral Res 2014;28:S1806-83242014000100257.ArticlePubMed
  • 100. Donnermeyer D, Vahdat-Pajouh N, Schäfer E, Dammaschke T. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology 2019;107:231-236.ArticlePubMedPDF
  • 101. Silva EJ, Carvalho NK, Prado MC, Zanon M, Senna PM, Souza EM, De-Deus G. Push-out bond strength of injectable Pozzolan-based root canal sealer. J Endod 2016;42:1656-1659.ArticlePubMed
  • 102. Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. J Endod 2010;36:2000-2002.ArticlePubMed
  • 103. Alsubait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, Almadhri R, Alfayez M, Anil S. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules 2018;8:E68.ArticlePubMedPMC
  • 104. Lim ES, Park YB, Kwon YS, Shon WJ, Lee KW, Min KS. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: in vitro and in vivo study. BMC Oral Health 2015;15:129.ArticlePubMedPMCPDF

Tables & Figures

Table 1

Root canal sealers reviewed in this article and their chemical compositions

Material base Products Manufacturer Composition
ZOE Roth's 801 [M] Roth International, Miami, FL, USA Powder: zinc oxide, staybelite resin, bismuth sub-carbonate, barium sulfate, sodium borate; Liquid: eugenol
Pulp Canal sealer [M] Kerr, Orange, CA, USA Powder: zinc oxide 30%–60%, 5,5′-diisopropyl-2,2′-dimethylbiphenyl-4,4′-diyl dihypoiodite 0.1%–5%; Liquid: eugenol 60%–90%, Canada balsam 10%–30%
Tubli Seal [M] Kerr, Orange, CA, USA Base: zinc oxide 60%–100%, white mineral oil (petroleum) 10%–30%; Accelerator: eugenol 30%–60%, 5,5′-diisopropyl-2,2′-dimethylbiphenyl-4,4′-diyl dihypoiodite 5%–10%
Endo N2 [M] Ghimas, Casalecchio di Reno, Italy Powder: zinc oxide 65.68%, nitrate bismuth 15.17%, carbonate bismuth 10.1%, paraformaldehyde 4%, titanium dioxide 4.76%, red ferric oxide 0.1%, zinc stearate 0.075%, dehydrate zinc acetate 0.075%, yellow ferric oxide 0.04%; Liquid: eugenol 77%, peanut oil 20%, rose oil 1.8%, lavender oil 1.2%
CH Sealapex root canal sealer [M] Kerr, Orange, CA, USA Base: N-ethyl-o (or p)-toluenesulfonamide 30%–60%, calcium oxide 30%–60%, zinc oxide 1%–5%, zinc distearate 1%–5%; Catalyst: methyl salicylate 10%–30%, 2,2 dimethylpropane-1,3-diol 1%–5%, isobutyl salicylate 1%–5%
Apexit Plus [M] Ivoclar Vivadent AG, Schaan, Liechtenstein Base: calcium hydroxide/calcium oxide 36.9%, hydrated colophonium 54%, fillers and other auxiliary materials 9.1%; Activator: disalicylate 47.6%, bismuth hydroxide/bismuth carbonate 36.4%, fillers and other auxiliary materials 16%
ER AH 26 [M] Dentsply DeTrey, Konstanz, Germany Powder: methenamine 25%–50%, titanium dioxide 2.5%–10%, silver 2.5%; Liquid: bisphenol A/epichlorohydrin resin 50%–100%
AH Plus [M] Dentsply DeTrey, Konstanz, Germany Paste A: bisphenol A diglycidylether 25%–50%, bis-[4-(-2,3-epoxypropoxy) phenyl]-methane 2.5%–10%; Paste B: N,N′-dibenzyl-5-oxanonandiamin-1,9 10%–25%, amantadine 2.5%–10%
Acroseal [M] Septodont, Saint-Maur-des-Fossés, France Base: resin acids, hydrogenated 25%–50%, TCD-diamine 10%–25%; Catalyst: bisphenol-A-(epichlorohydrin) epoxy resin 50%–100%, calcium dihydroxide 10%–25%
Easyseal [M] Komet Brasseler, GmbH Co., Lemgo, Germany Paste 1: 4-[-2-(4-hydroxyphenyl) propan-2-yl] phenol-epichlorohydrine resin, alkylglycidyl ether, barium sulfate, tricalcium phosphate, diphenylolpropane-diglycidyl ether; Paste 2: polyalkoxyalkylamine-copolymer, 5-amino-1,3,3-trimethylcyclohexanmethylamine, aqua, barium sulfate, tricalcium phosphate, nanodispers silicone dioxide, polyhexamethylene biguanides-hydrochloride
Theramseal [M] Dentsply Meillefer, Konstanz, Germany Paste A: epoxy resin, calcium tungstate, zirconium oxide, aerosol, iron oxide; Paste B: Adamantane amine, N,N′-dibenzyl-5-oxanonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide aerosol, silicone oil
Topseal [M] Dentsply Meillefer, Ballaigues, Switzerland Paste A: epoxy resin, calcium tungstate, zirconium oxide, aerosol, iron oxide; Paste B: adamantane amine, N,N′-dibenzyl-5-oxanonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide aerosol, silicone oil
MR Endorez [M] Ultradent Product Inc., South Jordan, UT, USA Base: diurethane dimethacrylate > 10 and ≤ 25%, triethylene glycol dimethacrylate > 10 and ≤ 25%, organophosphine oxide ≤ 2.5%, benzoyl peroxide ≤ 2.5%; Catalyst: diurethane dimethacrylate > 25 and ≤ 50%, triethylene glycol dimethacrylate > 10 and ≤ 25%
RealSeal (Eldeniz et al. [59]) SybronEndo, Orange, CA, USA PEGDMA, EBPADMA, EDMA, BisGMA, silane-treated barium borosilicate glasses, barium sulphate, silica, calcium hydroxide, bismuth oxychloride with amines, peroxide, photoinitiator, stabilizers, pigment
RealSeal SE [59] SybronEndo, Orange, CA, USA EBPADMA, HEMA, BisGMA, acidic methacrylate resins, barium borosilicate glasses, silica, hydroxyapatite, Ca-Al-F-silicate, bismuth oxychloride with amines, peroxide, photoinitiator, stabilizers, pigment, aluminium oxide
Hybrid Root Seal [59] Sun Medical, Moriyama, Japan Powder: zirconium oxide filler, SiO2 filler, and polymerization initiators; Liquid: 60% 4-META, 40% HEMA, dimethacrylates
Epiphany (Nawal et al. [91]) Pentron Clinical Technologies, Wallingford, CT, USA UDMA, PEGDMA, EBPADMA, BisGMA, silane-treated barium-borosilicate glasses, barium sulfate, silica, calcium hydroxide, bismuth oxychloride with amines, peroxide, photo initiator, stabilizers, pigment
Silicone GuttaFlow [91] Coltene/Whaledent, DPI, Mumbai, India Paste A (sealer): poly-dimethyl polymethyl hydrogen siloxane, silicone oil, paraffin oil, zirconium dioxide, platin catalyst; Paste B (powder): gutta percha (0.9 μm), zinc oxide, barium sulphate, nanosilver particles (as a preservative)
CP Apatite root sealer (Al-Haddad and Che Ab Aziz ZA [92]) Dentsply Sankin, Tokyo, Japan Powder: alpha tricalcium phosphate, hydroxyapatite, iodoform; Liquid: polyacrylic acid, water
CS iRoot SP [59] Innovative Bioceramix, Vancouver, BC, Canada Zirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, filler, thickening agent
MTA Fllapex [M] Angelus, Londrina, PR, Brazil Paste A: salicylate resin, bismuth trioxide, fumed silica; Paste B: fumed silica, titanium dioxide, MTA (40%, tricalcium silicate, dicalcium silicate, calcium oxide, tricalcium aluminate), base resin (pentaerythritol, rosinate, p-toluenesulfonamide)
EndoSequence BC [M] Brasseler, Savannah, GA, USA Zirconium oxide 35%–45%, dicalcium silicate 7%–15%, tricalcium silicate 20%–35%, calcium hydroxide 1%–4%, fillers
TotalFill BC [M] FKG Dentaire, La Chaux-de-Fonds, Switzerland Zirconium oxide 35%–45%, dicalcium silicate 7%–15%, tricalcium silicate 20%–35%, calcium hydroxide 1%–4%, fillers
Bioroot RCS [59] Septodont, Saint-Maur-des-Fossés, France Powder: tricalcium silicate, zirconium oxide and excipients; Aqueous solution: calcium chloride and excipients
Endoseal MTA [M] Maruchi, Wonju, Korea Calcium silicate, calcium aluminates, calcium aluminoferrite, calcium sulfates, radiopacifier, thickening agent
Endo CPM [M] EGEO S.R.L. Bajo Licencia MTM Argentina S.A., Buenos Aires, Argentina MTA: silicon dioxide, calcium carbonate, bismuth trioxide, barium sulfate, propylene glycol alginate, sodium citrate, calcium chloride, active ingredients
Nano Ceramic Sealer (Collado-González et al. [63]) B&L Biotech, Fairfax, VA, USA Calcium silicate, zirconium oxide, filler, thickening agent
ZOE, zinc oxide-eugenol; CH, calcium hydroxide; ER, epoxy resin; MR, methacrylate resin; CP, calcium phosphate; CS, calcium silicate; M, provided from manufacturer; 4‐META, 4‐methacryloxyethyl trimellitic anhydride; HEMA, 2‐hydroxyethyl methacrylate; TCD, tricyclodecane; PEGDMA, polyethylene glycol dimethacrylate; EBPADMA, ethoxylated bisphenol A dimethacrylate; EDMA, 3,4-ethylenedioxy-N-methylamphetamine; BisGMA, bisphenol A-glycidyl methacrylate; UDMA, urethane dimethylate.
Download Table Download Table
Table 2

Dimensional stability of calcium silicate sealers in the articles included in this review

Material (CS) Method Compared material Dimensional stability
BioRoot RCS Distilled water AH Plus (ER), Pulp Canal Sealer (ZOE), MTA Fillapex (CS) Water sorption: BioRoot RCS > MTA Fillapex > Pulp Canal Sealer > AH Plus (Siboni, et al. [24])
Distilled water Sealapex (CH), AH Plus (ER), EasySeal (ER), Pulp Canal Sealer (ZOE), N2 (ZOE), TotalFill BC (CS), MTA Fillapex (CS) Solubility: TotalFill BC Sealer = BioRoot RCS > MTA Fillapex > N2 = Sealapex > Easyseal > Pulp Canal Sealer > AH Plus (Poggio et al. [31])
PBS, Distilled water AH Plus (ER), MTA Fillapex (CS) Solubility: MTA Fillapex > BioRoot RCS > AH Plus (Urban et al. [22])
Distilled water AH Plus (ER), Sealapex (CH), EasySeal (ER), TotalFill BC (CS), MTA Fillapex (CS) Solubility: TotalFill BC Sealer > BioRoot RCS > MTA Fillapex > Sealapex > Easy Seal > AH Plus (Colombo et al. [32])
PBS, Distilled water AH Plus (ER), MTA Fillapex (CS) Solubility: BioRoot RCS > MTA Fillapex > AH Plus (Prüllage et al. [33])
iRoot SP Distilled water Sealapex (CH), EndoREZ (MR), AH Plus (ER) Water sorption: EndoREZ > iRoot SP > Sealapex > AH Plus; Solubility: Sealapex > iRoot SP = EndoREZ = AH Plus (Ersahan and Aydin [30])
Distilled water AH Plus (ER), Sealapex (CH), MTA-Angelus (CS), MTA Fillapex (CS) Solubility: iRoot SP > MTA Fillapex > Sealapex > MTA Angelus = AH Plus (Borges et al. [28])
EndoSequence BC Distilled water MTA Fillapex (CS), AH Plus (ER), ThermaSeal (ER), GuttaFlow (silicone), Pulp Canal Sealer (ZOE) Solubility: EndoSequence BC sealer > MTA Fillapex > Pulp Canal Sealer > AH Plus > GuttaFlow > ThermaSeal (Zhou et al. [29])
MTA Fillapex Distilled water AH Plus (ER) Solubility, water sorption: AH Plus > MTA Fillapex (Vitti et al. [25])
CS, calcium silicate; ER, epoxy resin; ZOE, zinc oxide-eugenol; CH, calcium hydroxide; MR, methacrylate resin.
Download Table Download Table
Table 3

Sealing ability of the calcium silicate sealers in the articles included in this review

Material (CS) Method Compared material Sealing ability
BioRoot RCS Single cone AH 26 (ER) Dentin penetration: BioRoot RCS > AH 26 (Uzunoglu-Özyürek et al. [93])
Lateral compaction AH Plus (ER) μCT void: AH Plus < BioRoot RCS; Fluid transport: BioRoot RCS = AH Plus (Viapiana et al. [94])
Single cone, Continuous wave Endoseal MTA (CS), AH Plus (ER) Dentin penetration: AH Plus > BioRoot RCS > Endoseal (Kim et al. [35])
Endoseal MTA Single cone, Continuous wave AH-Plus (ER), GuttaFlow (silicone) Bacterial leakage: GuttaFlow > Endoseal MTA = AH Plus (Hwang et al. [95])
EndoSequence BC Single cone, Lateral compaction AH 26 (ER), EndoREZ (MR) Fluid transport: AH 26, EndoRez < EndoSequence BC Sealer (Deniz Sungur et al. [96])
Single cone, Continuous wave AH 26 (ER) Endotoxin leakage: EndoSequence BC sealer > AH 26 (Oh et al. [97])
Continuous wave AH Plus (ER), Epiphany (ER), MTA Plus (CS) Dye penetration: EndoSequence BC sealer = Epiphany < AH Plus (Pawar et al. [37])
Lateral compaction Sealapex (CH), AH Plus (ER), EndoREZ (MR) Dye penetration: Endosequence BC sealer < EndoRez < Sealapex = MTA Plus < AH plus (Ballullaya et al. [36])
iRoot SP Lateral compaction Sealapex (CH), EndoREZ (MR), AH Plus (ER) Fluid transport: iRoot SP = AH Plus < EndoREZ = Sealapex (Ersahan and Aydin [30])
Single cone, Continuous wave AH Plus (ER) Fluid transport: iRoot SP = AH Plus (Zhang et al. [48])
Single cone, Continuous wave Topseal (ER) Penentration of sealer: iRoot SP < Topseal; Penetration of sealer: Single-point technique < Continuous wave of condensation (Fernández et al. [49])
Lateral compaction MTA Fillapex (CS) Fluid transport: iRoot SP < MTA Fillapex (Bidar et al. [98])
Lateral compaction Hybrid Root SEAL (MR), EndoREZ (ER), AH Plus (ER) Fluid transport: AH Plus = EndoREZ < iRoot SP < Hybrid Root SEAL (Ulusoy et al. [99])
MTA Fillapex Warm vertical compaction AH Plus (ER) Fluid transport: AH Plus < MTA Fillapex after 7 days, AH Plus > MTA Fillapex after 4 weeks (Asawaworarit et al. [23])
CS, calcium silicate; ER, epoxy resin; μCT, micro-computed tomography; CH, calcium hydroxide; MR, methacrylate resin.
Download Table Download Table
Table 4

Push-out bond strength of the calcium silicate sealers in the articles included in this review

Material (CS) Method Compared material Push-out bond strength
BioRoot RCS Single cone AH Plus (ER), GuttaFlow2 (silicone) AH Plus > BioRoot RCS > GuttaFlow 2 (Donnermeyer et al. [100])
Endoseal MTA No obturation AH Plus (ER), MTA Fillapex (CS) AH Plus > Endoseal MTA > MTA Fillapex (Silva et al. [101])
EndoSequence BC Lateral compaction, Thermoplasticized injection technology AH Plus (ER), MTA Plus Sealer (CS) AH Plus > EndoSequence BC sealer; lateral compaction > Thermoplasticized injection (Dabaj et al. [55])
Single cone, Continuous wave AH Plus (ER) EndoSequence BC sealer = AH Plus > MTA Plus; Single cone > Continuous wave (DeLong et al. [51])
iRoot SP No obturation AH Plus (ER), EndoREZ (ER), Sealapex (CH) iRoot SP = AH Plus > EndoREZ = Sealapex (Ersahan and Aydin [102])
Single cone RealSeal SE (MR), AH Plus (ER), MTA Fillapex (CS) AH Plus = iRoot SP > MTA Fillapex > RealSeal SE (Nagas et al. [50])
BioRoot RCS No obturation TotalFill BC (CS), AH Plus (ER), Endo CPM (CS) AH Plus > TotalFill BC Sealer > BioRoot RCS > Endo CPM Sealer (Donnermeyer et al. [20,21])
CS, calcium silicate; ER, epoxy resin; CH, calcium hydroxide; MR, methacrylate resin.
Download Table Download Table
Table 5

Biocompatibility of the calcium silicate sealers in the articles included in this review

Material Cells used Compared material Biocompatibility
iRoot SP L929 mouse fibroblasts AH Plus (ER), ProRoot MTA ProRoot MTA > iRoot SP > AH Plus (Zhang et al. [57])
MG 63 human osteoblast-like cells AH Plus (ER) iRoot SP: non-toxic, AH Plus: slightly cytotoxic (Zhang et al. [85])
hTGSCs ProRoot MTA, Dycal (CH) ProRoot MTA and iRoot SP: no cytotoxicity, Dycal: cytotoxicity (Güven et al. [87])
hPDL Sealapex (CH), Apatite root sealer (CP), MTA Fillapex (CS) None of the sealers were cytotoxic (Chang et al. [58])
EndoSequence BC MC3T3-E1 mouse osteoblast cells AH Plus (ER), Pulp Canal Sealer (ZOE) AH Plus > EndoSequence BC > Pulp Canal Sealer (Loushine et al. [69])
AH Plus (ER), MTA Fillapex (CS) EndoSequence BC, MTA Fillapex > AH plus (Lee et al. [70])
Human gingival fibroblasts MTA Fillapex (CS), AH Plus (ER) EndoSequence BC > AH plus > MTA Fillapex, AH Plus was cytotoxic as freshly mixed (Zhou et al. [65])
Balb/c3T3 mouse fibroblast Endoseal MTA, MTA Fillapex (CS), AH Plus (ER) Endoseal MTA, EndoSequence BC Sealer and AH Plus: similar cell viability, MTA Fillapex sealer: cytotoxic (da Silva et al. [67])
BioRoot RCS hPDL MTA-Fillapex, TotalFill BC (CS), GuttaFlow 2 (siolicone), AH Plus (ER), Roth's 801 (ZOE) GuttaFlow 2 > TotalFill > BioRoot > MTA Fillapex > AH Plus > Roth's 801 (Taraslia et al. [61])
MTA Fillapex (CS), AH Plus (ER), Pulp Canal Sealer (ZOE) Bioroot RCS > AH Plus > MTA Fillapex, Pulp Canal Sealer (Jung et al. [60])
AH Plus Jet, Acroseal (ER), EndoREZ, RealSeal, RealSeal SE, Hybrid Root Seal (MR), iRootSP, MTA Fillapex (CS) BioRoot RCS > iRoot SP > MTA Fillapex > EndoREZ > AH Plus Jet > RealSeal SE > Acroseal > Realseal > Hybrid Root seal (Eldeniz et al. [59])
HGF-1 (ATCC CRL-2014) TotalFill BC, MTA Fillapex (CS), Sealapex (CH), AH Plus, EasySeal (ER), Pulp Canal Sealer, N2 (ZOE) BioRoot RCS, TotalFill BC Sealer and AH Plus: no cytotoxic effects in the first 24 hr, All the other sealers: cytotoxic (Poggio et al. [31])
EasySeal, AH Plus (ER), SealapexTM (CH), MTA Fillapex, TotalFill BC (CS) BioRoot RCS, TotalFill BC > AH Plus, Sealapex TM > EasySeal, MTA Fillapex (Colombo et al. [32])
Human bone marrow mesenchymal stem cells EndoSequence BC (CS), AH Plus (ER) BioRoot RCS, Endosequece BC > AH Plus (Alsubait et al. [103])
Endoseal MTA MC3T3-E1 mouse osteoblast cells ProRoot MTA, AH plus (ER) ProRoot MTA, Endosael MTA > AH Plus (Lim et al. [104])
hPDLSCs Bioroot RCS, Endoseal MTA, Nano Ceramic Sealer (CS) Bioroot RCS, Nano Ceramic Sealer > Endoseal MTA (Collado-González et al. [63])
Human gingival fibroblast AH Plus (ER), MTA Fillapex, BioRoot RCS (CS) MTA Fillapex > Bioroot RCS > AH plus > Endoseal MTA (Kebudi Benezra et al. [64])
MR, methacrylate resin; ER, epoxy resin; hTGSC, human tooth germ stem cell; CH, calcium hydroxide; hPDL, human periodontal ligament; CP, calcium phosphate; ZOE, zinc oxide-eugenol; CS, calcium silicate; HGF-1, human gingival fibroblast; hPDLSC, human periodontal ligament stem cell.
Download Table Download Table
Table 6

Antibacterial effects on Enterococcus faecalis of the various calcium silicate sealers in the articles included in this review

Material Compared material (based material) Test method Sealer setting Evaluation time Antibacterial effect against E. faecalis
iRoot SP AH Plus (ER), Epiphany, EndoRez (MR), Apexit Plus, Sealapex (CH), Tubli Seal EWT (ZOE) DCT Fresh, 1, 3, and 7 days 2–60 min Fresh: iRoot SP, AH Plus, EndoRez, Sealapex, Epiphany; 1 day and 3 days: iRoot SP, EndoRez > Sealapex, Epiphany; 7 days: EndoRez, Sealapex (Zhang et al. [71])
AH Plus (ER), Tubliseal EWT (ZOE), EndoRez (MR) DCT 20 min Every 30 min up to 18 hr AH Plus, iRoot SP (Nirupama et al. [81])
EndoSequence BC AH Plus (ER) ADT Fresh 48 hr AH Plus > EndoSequence BC (Candeiro et al. [77])
DCT Fresh 1, 24, 72, 168 hr AH Plus > EndoSequence BC up to 1 hr, after 1 hr, similar effects [77]
AH Plus (ER), Pulp Canal Sealer (ZOE) CLSM Fresh 1, 7, 30 days EndoSequence BC, AH Plus > Pulp Canal Sealer (Wang et al. [79])
GuttaFlow (silicone), Pulp Canal Sealer (ZOE), AH Plus Jet (ER) SEM 24 hr 24 hr Pulp Canal Sealer (Willershausen et al. [83])
BioRootRCS MTA Fillapex (CS), AH Plus (ER) ADT 24 hr 24 hr Bioroot RCS, AH Plus > MTA Fillapex (Arias-Moliz and Camilleri [78])
CLSM 24 hr 7 days BioRoot RCS > MTA Fillapex > AH Plus [78]
TotalFill BC (CS), AH Plus (ER) CLSM Fresh 1, 7, 30 days BioRoot RCS > TotalFill BC, AH Plus after 30 days (Alsubait et al. [80])
EasySeal, AH Plus (ER), SealapexTM (CH), TotalFill BC, MTA Fillapex (CS) ADT Fresh 48 hr EasySeal > AH Plus > BioRoot RCS, Sealapex, MTA Fillapex (Colombo et al. [32])
DCT 7 day 6, 15, 60 min 6 min: TotalFill BC, Easyseal > Bioroot RCS > MTA Fillapex
15, 60 min: BioRoot RCS, TotalFill BC, EasySeal > MTA Fillapex, Sealapex > AH Plus (Colombo et al. [32])
Endoseal MTA AH Plus (ER), Sealapex (CH), Tubli-Seal (ZOE), EndoSequence BC (CS) DCT Before and after setting 24 hr Endoseal MTA > Sealapex > TubliSeal > AH Plus > EndoSequence BC
All sealers had less effect after setting (Shin et al. [82])
ER, epoxy resin; MR, methacrylate resin; CH, calcium hydroxide; ZOE, zinc oxide-eugenol; DCT, direct contact test; ADT, agar diffusion test; CLSM, confocal laser scanning microscopy; SEM, scanning electron microscopy; CS, calcium silicate.
Download Table Download Table
Table 7

Bioactivity of the calcium silicate sealers in the articles included in this review

Material Compared material Cells used Mineralization potential
iRoot SP AH Plus (ER) MG 63 human osteoblast-like cells COL 1, OCN and BSP mRNA expression up-regulation: iRoot SP > AH Plus (Zhang et al. [85])
ProRoot MTA, Dycal (CH) hTGSCs COL 1A and DSPP mRNA expression: MTA > iRoot SP (Güven et al. [87])
Sealapex (CH), Apatite root sealer (CP), MTA Fillapex (CS) Human PDL cells ALP, mineralization nodule up-regulation: all sealers except for Sealapex; ON, OPN, OCN, Osterix, Runx2: MTA Fillapex > Apatitie root sealer > iRoot SP > Sealapex (Chang et al. [58])
EndoSequence BC AH Plus (ER), MTA Fillapex (CS) MC3T3-E1 mouse osteoblast cells All sealers increased ALP, OCN and alizarin red staining mineral: Calcium silicate sealers > AH Plus (Lee et al. [70])
BioRoot RCS Pulp Canal Sealer (ZOE) hPDL, Mouse pulp-derived stem cell line A4 BMP2, TGF2: BioRoot RCS > Pulp Canal Sealer (Camps et al. [86]); VEGF: BioRoot = Pulp Canal Sealer (Camps et al. [86]); COL1, DMP1, BSP expression: BioRoot RCS preserved the intrinsic ability, but Pulp Canal Sealer reduced the ability (Dimitrova-Nakov et al. [89])
AH Plus (ER), MTA Fillapex (CS), Pulp Canal Sealer (ZOE) Calcium release, pH, nucleation of CaP after aging 28 day BioRoot RCS > MTA Fillapex > AH Plus > Pulp Canal Sealer (Siboni et al. [24])
Biodentine Human dental pulp stem cell Both of them; Mineralization matrix induction: up-regulation; ALP, COL A1, OPN: down-regulation; Runx2: unmodified; Nestin, Msx2: up-regulation; DSPP expressed in direct contact with Biodentine, but BioRoot RCS needed mineralizing conditions, i.e., phosphate ions (Loison-Robert et al. [88])
Endoseal MTA ProRoot MTA Intratubular biomineralization Endoseal MTA enhanced biomineralization of dentinal tubules (Yoo et al. [90])
ER, epoxy resin; COL, collagen; OCN, osteocalcin; BSP, bone sialoprotein; CH, calcium hydroxide; hTGSC, human tooth germ stem cell; DSPP, dentin sialophosphoprotein; CP, calcium phosphate; CS, calcium silicate; PDL, periodontal ligament; ALP, alkaline phosphatase; ON, osteonectin; OPN, osteopontin; Runx, runt-related transcription factor; ZOE, zinc oxide-eugenol; hPDL, human periodontal ligament; BMP, bone morphogenic protein; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; DMP, dentin matrix protein; BSP, bone sialoprotein; CaP, calcium phosphate; Msx, msh homeobox.
Download Table Download Table

REFERENCES

  • 1. Schilder H. Filling root canals in three dimensions. 1967. J Endod 2006;32:281-290.PubMed
  • 2. Ørstavik D. Materials used for root canal obturation: technical, biological and clinical testing. Endod Topics 2005;12:25-38.Article
  • 3. Grossman L. Endodontic practice. 10th ed. Philadelphia (PA): Henry Kimpton Publishers; 1981.
  • 4. Manappallil JJ. Basic dental materials. 4th ed. New Delhi: Jaypee Brothers Medical Publishers; 2015.
  • 5. Berman LH, Hargreaves K, Cohen S. Cohen's pathways of the pulp expert consult. 10th ed. Maryland Heights (MO): Mosby Elsevier; 2010.
  • 6. Garrido AD, Lia RC, França SC, da Silva JF, Astolfi-Filho S, Sousa-Neto MD. Laboratory evaluation of the physicochemical properties of a new root canal sealer based on Copaifera multijuga oil-resin. Int Endod J 2010;43:283-291.ArticlePubMed
  • 7. Lee JK, Kwak SW, Ha JH, Lee W, Kim HC. Physicochemical properties of epoxy resin-based and bioceramic-based root canal sealers. Bioinorg Chem Appl 2017;2017:2582849.ArticlePubMedPMCPDF
  • 8. Poggio C, Arciola CR, Dagna A, Colombo M, Bianchi S, Visai L. Solubility of root canal sealers: a comparative study. Int J Artif Organs 2010;33:676-681.ArticlePubMedPDF
  • 9. McMichen FR, Pearson G, Rahbaran S, Gulabivala K. A comparative study of selected physical properties of five root-canal sealers. Int Endod J 2003;36:629-635.ArticlePubMedPDF
  • 10. Schweikl H, Schmalz G, Federlin M. Mutagenicity of the root canal sealer AHPlus in the Ames test. Clin Oral Investig 1998;2:125-129.ArticlePubMedPDF
  • 11. Azar NG, Heidari M, Bahrami ZS, Shokri F. In vitro cytotoxicity of a new epoxy resin root canal sealer. J Endod 2000;26:462-465.ArticlePubMed
  • 12. Cohen BI, Pagnillo MK, Musikant BL, Deutsch AS. An in vitro study of the cytotoxicity of two root canal sealers. J Endod 2000;26:228-229.ArticlePubMed
  • 13. Sousa CJ, Montes CR, Pascon EA, Loyola AM, Versiani MA. Comparison of the intraosseous biocompatibility of AH Plus, EndoREZ, and Epiphany root canal sealers. J Endod 2006;32:656-662.ArticlePubMed
  • 14. Roggendorf MJ, Ebert J, Petschelt A, Frankenberger R. Influence of moisture on the apical seal of root canal fillings with five different types of sealer. J Endod 2007;33:31-33.ArticlePubMed
  • 15. Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TR. The constitution of mineral trioxide aggregate. Dent Mater 2005;21:297-303.ArticlePubMed
  • 16. Asgary S, Parirokh M, Eghbal MJ, Stowe S, Brink F. A qualitative X-ray analysis of white and grey mineral trioxide aggregate using compositional imaging. J Mater Sci Mater Med 2006;17:187-191.ArticlePubMedPDF
  • 17. Parirokh M, Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review--Part I: chemical, physical, and antibacterial properties. J Endod 2010;36:16-27.ArticlePubMed
  • 18. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993;19:541-544.ArticlePubMed
  • 19. Darvell BW, Wu RC. “MTA”-an Hydraulic Silicate Cement: review update and setting reaction. Dent Mater 2011;27:407-422.ArticlePubMed
  • 20. Donnermeyer D, Bürklein S, Dammaschke T, Schäfer E. Endodontic sealers based on calcium silicates: a systematic review. Odontology 2019;107:421-436.ArticlePubMedPDF
  • 21. Donnermeyer D, Dornseifer P, Schäfer E, Dammaschke T. The push-out bond strength of calcium silicate-based endodontic sealers. Head Face Med 2018;14:13.ArticlePubMedPMCPDF
  • 22. Urban K, Neuhaus J, Donnermeyer D, Schäfer E, Dammaschke T. Solubility and pH value of 3 different root canal sealers: a long-term investigation. J Endod 2018;44:1736-1740.ArticlePubMed
  • 23. Asawaworarit W, Yachor P, Kijsamanmith K, Vongsavan N. Comparison of the apical sealing ability of calcium silicate-based sealer and resin-based sealer using the fluid-filtration technique. Med Princ Pract 2016;25:561-565.ArticlePubMedPMCPDF
  • 24. Siboni F, Taddei P, Zamparini F, Prati C, Gandolfi MG. Properties of BioRoot RCS, a tricalcium silicate endodontic sealer modified with povidone and polycarboxylate. Int Endod J 2017;50(Suppl 2):e120-e136.ArticlePubMedPDF
  • 25. Vitti RP, Prati C, Silva EJ, Sinhoreti MA, Zanchi CH, de Souza e Silva MG, Ogliari FA, Piva E, Gandolfi MG. Physical properties of MTA Fillapex sealer. J Endod 2013;39:915-918.ArticlePubMed
  • 26. International Organization of Standardization. International Standard ISO 6876. Specification for dental root canal sealing materials. 3rd ed. Geneva: International Organization of Standardization; 2012.
  • 27. Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Influence of environment on testing of hydraulic sealers. Sci Rep 2017;7:17927.PubMedPMC
  • 28. Borges RP, Sousa-Neto MD, Versiani MA, Rached-Júnior FA, De-Deus G, Miranda CE, Pécora JD. Changes in the surface of four calcium silicate-containing endodontic materials and an epoxy resin-based sealer after a solubility test. Int Endod J 2012;45:419-428.ArticlePubMed
  • 29. Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Physical properties of 5 root canal sealers. J Endod 2013;39:1281-1286.ArticlePubMed
  • 30. Ersahan S, Aydin C. Solubility and apical sealing characteristics of a new calcium silicate-based root canal sealer in comparison to calcium hydroxide-, methacrylate resin- and epoxy resin-based sealers. Acta Odontol Scand 2013;71:857-862.ArticlePubMed
  • 31. Poggio C, Dagna A, Ceci M, Meravini MV, Colombo M, Pietrocola G. Solubility and pH of bioceramic root canal sealers: a comparative study. J Clin Exp Dent 2017;9:e1189-e1194.ArticlePubMedPMC
  • 32. Colombo M, Poggio C, Dagna A, Meravini MV, Riva P, Trovati F, Pietrocola G. Biological and physico-chemical properties of new root canal sealers. J Clin Exp Dent 2018;10:e120-e126.ArticlePubMedPMC
  • 33. Prüllage RK, Urban K, Schäfer E, Dammaschke T. Material properties of a tricalcium silicate-containing, a mineral trioxide aggregate-containing, and an epoxy resin-based root canal sealer. J Endod 2016;42:1784-1788.ArticlePubMed
  • 34. Wu MK, De Gee AJ, Wesselink PR, Moorer WR. Fluid transport and bacterial penetration along root canal fillings. Int Endod J 1993;26:203-208.ArticlePubMed
  • 35. Kim Y, Kim BS, Kim YM, Lee D, Kim SY. The penetration ability of calcium silicate root canal sealers into dentinal tubules compared to conventional resin-based sealer: a confocal laser scanning microscopy study. Materials (Basel) 2019;12:E531.Article
  • 36. Ballullaya SV, Vinay V, Thumu J, Devalla S, Bollu IP, Balla S. Stereomicroscopic dye leakage measurement of six different root canal sealers. J Clin Diagn Res 2017;11:ZC65-ZC68.ArticlePubMedPMC
  • 37. Pawar SS, Pujar MA, Makandar SD. Evaluation of the apical sealing ability of bioceramic sealer, AH plus & epiphany: an in vitro study. J Conserv Dent 2014;17:579-582.ArticlePubMedPMC
  • 38. Jafari F, Jafari S. Importance and methodologies of endodontic microleakage studies: a systematic review. J Clin Exp Dent 2017;9:e812-e819.ArticlePubMedPMC
  • 39. Atmeh AR, Chong EZ, Richard G, Festy F, Watson TF. Dentin-cement interfacial interaction: calcium silicates and polyalkenoates. J Dent Res 2012;91:454-459.ArticlePubMedPMCPDF
  • 40. Jeong JW, DeGraft-Johnson A, Dorn SO, Di Fiore PM. Dentinal tubule penetration of a calcium silicate-based root canal sealer with different obturation methods. J Endod 2017;43:633-637.ArticlePubMed
  • 41. Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabé PF, Dezan Júnior E. Reaction of rat connective tissue to implanted dentin tubes filled with mineral trioxide aggregate or calcium hydroxide. J Endod 1999;25:161-166.ArticlePubMed
  • 42. Gandolfi MG, Prati C. MTA and F-doped MTA cements used as sealers with warm gutta-percha. Long-term study of sealing ability. Int Endod J 2010;43:889-901.ArticlePubMed
  • 43. Iacono F, Gandolfi MG, Huffman B, Sword J, Agee K, Siboni F, Tay F, Prati C, Pashley D. Push-out strength of modified Portland cements and resins. Am J Dent 2010;23:43-46.PubMed
  • 44. Weller RN, Tay KC, Garrett LV, Mai S, Primus CM, Gutmann JL, Pashley DH, Tay FR. Microscopic appearance and apical seal of root canals filled with gutta-percha and ProRoot Endo Sealer after immersion in a phosphate-containing fluid. Int Endod J 2008;41:977-986.ArticlePubMed
  • 45. Neelakantan P, Subbarao C, Subbarao CV, De-Deus G, Zehnder M. The impact of root dentine conditioning on sealing ability and push-out bond strength of an epoxy resin root canal sealer. Int Endod J 2011;44:491-498.ArticlePubMed
  • 46. Lee YL, Lin FH, Wang WH, Ritchie HH, Lan WH, Lin CP. Effects of EDTA on the hydration mechanism of mineral trioxide aggregate. J Dent Res 2007;86:534-538.ArticlePubMedPDF
  • 47. Wu MK, Bud MG, Wesselink PR. The quality of single cone and laterally compacted gutta-percha fillings in small and curved root canals as evidenced by bidirectional radiographs and fluid transport measurements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;108:946-951.ArticlePubMed
  • 48. Zhang W, Li Z, Peng B. Assessment of a new root canal sealer's apical sealing ability. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:e79-e82.ArticlePubMed
  • 49. Fernández R, Restrepo JS, Aristizábal DC, Álvarez LG. Evaluation of the filling ability of artificial lateral canals using calcium silicate-based and epoxy resin-based endodontic sealers and two gutta-percha filling techniques. Int Endod J 2016;49:365-373.ArticlePubMed
  • 50. Nagas E, Cehreli Z, Uyanik MO, Durmaz V. Bond strength of a calcium silicate-based sealer tested in bulk or with different main core materials. Braz Oral Res 2014;28:S1806-83242014000100256.ArticlePubMed
  • 51. DeLong C, He J, Woodmansey KF. The effect of obturation technique on the push-out bond strength of calcium silicate sealers. J Endod 2015;41:385-388.ArticlePubMed
  • 52. Reyes-Carmona JF, Felippe MS, Felippe WT. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength. J Endod 2010;36:286-291.ArticlePubMed
  • 53. Camilleri J. Sealers and warm gutta-percha obturation techniques. J Endod 2015;41:72-78.ArticlePubMed
  • 54. Viapiana R, Guerreiro-Tanomaru JM, Tanomaru-Filho M, Camilleri J. Investigation of the effect of sealer use on the heat generated at the external root surface during root canal obturation using warm vertical compaction technique with System B heat source. J Endod 2014;40:555-561.ArticlePubMed
  • 55. Dabaj P, Kalender A, Unverdi Eldeniz A. Push-out bond strength and SEM evaluation in roots filled with two different techniques using new and conventional sealers. Materials (Basel) 2018;11:E1620.ArticlePubMedPMC
  • 56. Qu W, Bai W, Liang YH, Gao XJ. Influence of warm vertical compaction technique on physical properties of root canal sealers. J Endod 2016;42:1829-1833.ArticlePubMed
  • 57. Zhang W, Li Z, Peng B. Ex vivo cytotoxicity of a new calcium silicate-based canal filling material. Int Endod J 2010;43:769-774.ArticlePubMed
  • 58. Chang SW, Lee SY, Kang SK, Kum KY, Kim EC. In vitro biocompatibility, inflammatory response, and osteogenic potential of 4 root canal sealers: Sealapex, Sankin apatite root sealer, MTA Fillapex, and iRoot SP root canal sealer. J Endod 2014;40:1642-1648.ArticlePubMed
  • 59. Eldeniz AU, Shehata M, Högg C, Reichl FX. DNA double-strand breaks caused by new and contemporary endodontic sealers. Int Endod J 2016;49:1141-1151.PubMed
  • 60. Jung S, Libricht V, Sielker S, Hanisch MR, Schäfer E, Dammaschke T. Evaluation of the biocompatibility of root canal sealers on human periodontal ligament cells ex vivo . Odontology 2019;107:54-63.ArticlePubMedPDF
  • 61. Taraslia V, Anastasiadou E, Lignou C, Keratiotis G, Agrafioti A, Kontakiotis EG. Assessment of cell viability in four novel endodontic sealers. Eur J Dent 2018;12:287-291.ArticlePubMedPMC
  • 62. Ames JM, Loushine RJ, Babb BR, Bryan TE, Lockwood PE, Sui M, Roberts S, Weller RN, Pashley DH, Tay FR. Contemporary methacrylate resin-based root canal sealers exhibit different degrees of ex vivo cytotoxicity when cured in their self-cured mode. J Endod 2009;35:225-228.ArticlePubMed
  • 63. Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 2017;50:875-884.ArticlePubMedPDF
  • 64. Kebudi Benezra M, Schembri Wismayer P, Camilleri J. Interfacial characteristics and cytocompatibility of hydraulic sealer cements. J Endod 2018;44:1007-1017.ArticlePubMed
  • 65. Zhou HM, Du TF, Shen Y, Wang ZJ, Zheng YF, Haapasalo M. In vitro cytotoxicity of calcium silicate-containing endodontic sealers. J Endod 2015;41:56-61.ArticlePubMed
  • 66. Poggio C, Riva P, Chiesa M, Colombo M, Pietrocola G. Comparative cytotoxicity evaluation of eight root canal sealers. J Clin Exp Dent 2017;9:e574-e578.ArticlePubMedPMC
  • 67. da Silva EJ, Zaia AA, Peters OA. Cytocompatibility of calcium silicate-based sealers in a three-dimensional cell culture model. Clin Oral Investig 2017;21:1531-1536.ArticlePubMedPDF
  • 68. Portella FF, Collares FM, Dos Santos LA, dos Santos BP, Camassola M, Leitune VC, Samuel SM. Glycerol salicylate-based containing α-tricalcium phosphate as a bioactive root canal sealer. J Biomed Mater Res B Appl Biomater 2015;103:1663-1669.ArticlePubMed
  • 69. Loushine BA, Bryan TE, Looney SW, Gillen BM, Loushine RJ, Weller RN, Pashley DH, Tay FR. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod 2011;37:673-677.ArticlePubMed
  • 70. Lee BN, Hong JU, Kim SM, Jang JH, Chang HS, Hwang YC, Hwang IN, Oh WM. Anti-inflammatory and osteogenic effects of calcium silicate-based root canal sealers. J Endod 2019;45:73-78.ArticlePubMed
  • 71. Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis . J Endod 2009;35:1051-1055.ArticlePubMed
  • 72. Sjögren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 1997;30:297-306.ArticlePubMed
  • 73. Stuart CH, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod 2006;32:93-98.ArticlePubMed
  • 74. Desai S, Chandler N. Calcium hydroxide-based root canal sealers: a review. J Endod 2009;35:475-480.ArticlePubMed
  • 75. Jafari F, Jafari S. Composition and physicochemical properties of calcium silicate based sealers: a review article. J Clin Exp Dent 2017;9:e1249-e1255.ArticlePubMedPMC
  • 76. Cai M, Abbott P, Castro Salgado J. Hydroxyl ion diffusion through radicular dentine when calcium hydroxide is used under different conditions. Materials (Basel) 2018;11:E152.Article
  • 77. Candeiro GT, Moura-Netto C, D'Almeida-Couto RS, Azambuja-Júnior N, Marques MM, Cai S, Gavini G. Cytotoxicity, genotoxicity and antibacterial effectiveness of a bioceramic endodontic sealer. Int Endod J 2016;49:858-864.ArticlePubMedPDF
  • 78. Arias-Moliz MT, Camilleri J. The effect of the final irrigant on the antimicrobial activity of root canal sealers. J Dent 2016;52:30-36.ArticlePubMed
  • 79. Wang Z, Shen Y, Haapasalo M. Dentin extends the antibacterial effect of endodontic sealers against Enterococcus faecalis biofilms. J Endod 2014;40:505-508.ArticlePubMed
  • 80. Alsubait S, Albader S, Alajlan N, Alkhunaini N, Niazy A, Almahdy A. Comparison of the antibacterial activity of calcium silicate- and epoxy resin-based endodontic sealers against Enterococcus faecalis biofilms: a confocal laser-scanning microscopy analysis. Odontology 2019;107:513-520.ArticlePubMedPDF
  • 81. Nirupama DN, Nainan MT, Ramaswamy R, Muralidharan S, Usha HH, Sharma R, Gupta S. In vitro evaluation of the antimicrobial efficacy of four endodontic biomaterials against Enterococcus faecalis, Candida albicans, and Staphylococcus aureus . Int J Biomater 2014;2014:383756.ArticlePubMedPMCPDF
  • 82. Shin JH, Lee DY, Lee SH. Comparison of antimicrobial activity of traditional and new developed root sealers against pathogens related root canal. J Dent Sci 2018;13:54-59.ArticlePubMedPMC
  • 83. Willershausen I, Callaway A, Briseño B, Willershausen B. In vitro analysis of the cytotoxicity and the antimicrobial effect of four endodontic sealers. Head Face Med 2011;7:15.ArticlePubMedPMCPDF
  • 84. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 2006;27:2907-2915.ArticlePubMed
  • 85. Zhang W, Li Z, Peng B. Effects of iRoot SP on mineralization-related genes expression in MG63 cells. J Endod 2010;36:1978-1982.ArticlePubMed
  • 86. Camps J, Jeanneau C, El Ayachi I, Laurent P, About I. Bioactivity of a calcium silicate-based endodontic cement (BioRoot RCS): interactions with human periodontal ligament cells in vitro . J Endod 2015;41:1469-1473.ArticlePubMed
  • 87. Güven EP, Taşlı PN, Yalvac ME, Sofiev N, Kayahan MB, Sahin F. In vitro comparison of induction capacity and biomineralization ability of mineral trioxide aggregate and a bioceramic root canal sealer. Int Endod J 2013;46:1173-1182.ArticlePubMed
  • 88. Loison-Robert LS, Tassin M, Bonte E, Berbar T, Isaac J, Berdal A, Simon S, Fournier BP. In vitro effects of two silicate-based materials, Biodentine and BioRoot RCS, on dental pulp stem cells in models of reactionary and reparative dentinogenesis. PLoS One 2018;13:e0190014.ArticlePubMedPMC
  • 89. Dimitrova-Nakov S, Uzunoglu E, Ardila-Osorio H, Baudry A, Richard G, Kellermann O, Goldberg M. In vitro bioactivity of Bioroot™ RCS, via A4 mouse pulpal stem cells. Dent Mater 2015;31:1290-1297.ArticlePubMed
  • 90. Yoo YJ, Baek SH, Kum KY, Shon WJ, Woo KM, Lee W. Dynamic intratubular biomineralization following root canal obturation with pozzolan-based mineral trioxide aggregate sealer cement. Scanning 2016;38:50-56.ArticlePubMedPDF
  • 91. Nawal RR, Parande M, Sehgal R, Naik A, Rao NR. A comparative evaluation of antimicrobial efficacy and flow properties for Epiphany, Guttaflow and AH-Plus sealer. Int Endod J 2011;44:307-313.ArticlePubMed
  • 92. Al-Haddad A, Che Ab Aziz ZA. Bioceramic-based root canal sealers: a review. Int J Biomater 2016;2016:9753210.ArticlePubMedPMCPDF
  • 93. Uzunoglu-Özyürek E, Erdoğan Ö, Aktemur Türker S. Effect of calcium hydroxide dressing on the dentinal tubule penetration of 2 different root canal sealers: a confocal laser scanning microscopic study. J Endod 2018;44:1018-1023.ArticlePubMed
  • 94. Viapiana R, Moinzadeh AT, Camilleri L, Wesselink PR, Tanomaru Filho M, Camilleri J. Porosity and sealing ability of root fillings with gutta-percha and BioRoot RCS or AH Plus sealers. Evaluation by three ex vivo methods. Int Endod J 2016;49:774-782.PubMed
  • 95. Hwang JH, Chung J, Na HS, Park E, Kwak S, Kim HC. Comparison of bacterial leakage resistance of various root canal filling materials and methods: confocal laser-scanning microscope study. Scanning 2015;37:422-428.ArticlePubMedPDF
  • 96. Deniz Sungur D, Moinzadeh AT, Wesselink PR, Çalt Tarhan S, Özok AR. Sealing efficacy of a single-cone root filling after post space preparation. Clin Oral Investig 2016;20:1071-1077.ArticlePubMedPDF
  • 97. Oh S, Cho SI, Perinpanayagam H, You J, Hong SH, Yoo YJ, Chang SW, Shon WJ, Yoo JS, Baek SH, Kum KY. Novel calcium zirconate silicate cement biomineralize and seal root canals. Materials (Basel) 2018;11:E588.ArticlePubMedPMC
  • 98. Bidar M, Sadeghalhoseini N, Forghani M, Attaran N. Effect of the smear layer on apical seals produced by two calcium silicate-based endodontic sealers. J Oral Sci 2014;56:215-219.ArticlePubMed
  • 99. Ulusoy OI, Nayir Y, Celik K, Yaman SD. Apical microleakage of different root canal sealers after use of maleic acid and EDTA as final irrigants. Braz Oral Res 2014;28:S1806-83242014000100257.ArticlePubMed
  • 100. Donnermeyer D, Vahdat-Pajouh N, Schäfer E, Dammaschke T. Influence of the final irrigation solution on the push-out bond strength of calcium silicate-based, epoxy resin-based and silicone-based endodontic sealers. Odontology 2019;107:231-236.ArticlePubMedPDF
  • 101. Silva EJ, Carvalho NK, Prado MC, Zanon M, Senna PM, Souza EM, De-Deus G. Push-out bond strength of injectable Pozzolan-based root canal sealer. J Endod 2016;42:1656-1659.ArticlePubMed
  • 102. Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. J Endod 2010;36:2000-2002.ArticlePubMed
  • 103. Alsubait SA, Al Ajlan R, Mitwalli H, Aburaisi N, Mahmood A, Muthurangan M, Almadhri R, Alfayez M, Anil S. Cytotoxicity of different concentrations of three root canal sealers on human mesenchymal stem cells. Biomolecules 2018;8:E68.ArticlePubMedPMC
  • 104. Lim ES, Park YB, Kwon YS, Shon WJ, Lee KW, Min KS. Physical properties and biocompatibility of an injectable calcium-silicate-based root canal sealer: in vitro and in vivo study. BMC Oral Health 2015;15:129.ArticlePubMedPMCPDF

Citations

Citations to this article as recorded by  
  • Effect of Different Tapered Gutta-Percha Points on Push-Out Bond Strength of Two Root Canal Sealers
    Warattama Suksaphar, Pakit Tungsawat, Ninnita Wongwatanasanti, Siripat Lertnantapanya, Prattana Yodmanothum
    European Journal of General Dentistry.2025;[Epub]     CrossRef
  • Effect of Electrical Heat Carrier Temperature on Bacterial Leakage of Endodontically Treated Teeth Using a Bioceramic Sealer
    Mir Ahmad Nabavi, Mahmood Reza Kalantar Motamedi, Pedram Fattahi, Saber Khazaei
    Clinical and Experimental Dental Research.2025;[Epub]     CrossRef
  • Nanoparticles modified bioceramic sealers on solubility, antimicrobial efficacy, pushout bond strength and marginal adaptation at apical-third of canal dentin
    Basil Almutairi, Fahad Alkhudhairy
    PeerJ.2025; 13: e18840.     CrossRef
  • Management of rarely seen internal tunnelling root resorption associated with a maxillary permanent incisor
    Kirsty A. Carney, Thibault N. E. Colloc, Julie K. Kilgariff
    British Dental Journal.2024; 236(12): 955.     CrossRef
  • Top tips for treatment planning: tooth-by-tooth prognosis - Part 3: endodontic prognosis
    Prashanti Eachempati, Andrew Harris, Guy Lambourn, Tony Francis, Ewen McColl
    British Dental Journal.2024; 237(9): 686.     CrossRef
  • Retreatability of calcium silicate-based sealers based on micro-computed tomographic evaluation − A systematic review
    Sundus Mohammed Bukhary
    The Saudi Dental Journal.2024; 36(10): 1278.     CrossRef
  • Evaluation of Setting Time, Flowability, Film Thickness, and Radiopacity of Experimental Monocalcium Silicate‐Based Root Canal Sealers
    Sukanya Juntha, Pakit Tungsawat, Ninnita Wongwatanasanti, Warattama Suksaphar, Siripat Lertnantapanya, Carlos M. Ardila
    International Journal of Dentistry.2024;[Epub]     CrossRef
  • Root Canal Treatment and Demand for Continuing Education among Thai Dental Practitioners
    Ninnita Wongwatanasanti, Pakit Tungsawat, Warattama Suksaphar, Siripat Lertnantapanya, Prattana Yodmanotham
    The Open Dentistry Journal.2024;[Epub]     CrossRef
  • Clinical outcome of non-surgical root canal treatment using different sealers and techniques of obturation in 237 patients: A retrospective study
    Mateusz Radwanski, Krystyna Pietrzycka, Tan Fırat Eyüboğlu, Mutlu Özcan, Monika Lukomska-Szymanska
    Clinical Oral Investigations.2024;[Epub]     CrossRef
  • Endodontic sealers after exposure to chlorhexidine digluconate: An assessment of physicochemical properties
    Vasileios Kapralos, Josette Camilleri, Andreas Koutroulis, Håkon Valen, Dag Ørstavik, Pia Titterud Sunde
    Dental Materials.2024; 40(3): 420.     CrossRef
  • Assessment the bioactivity of zinc oxid eugenol sealer after the addition of different concentrations of nano hydroxyapatite-tyrosine amino acid
    Rasha M. Al-Shamaa, Raghad A. Al-Askary
    Brazilian Journal of Oral Sciences.2024; 23: e243733.     CrossRef
  • Interfacial adaptation of newly prepared nano-tricalcium silicate-58s bioactive glass-based endodontic sealer
    Nawal A. Al-Sabawi, Sawsan Hameed Al-Jubori
    Journal of Dental Research, Dental Clinics, Dental Prospects.2024; 18(2): 115.     CrossRef
  • Marginal adaptation of customized gutta percha cone with calcium silicate based sealer versus MTA and biodentine apical plugs in simulated immature permanent teeth (an in vitro study)
    Mary M. Mina, Sybel M. Moussa, Mahmoud R. Aboelseoud
    BMC Oral Health.2024;[Epub]     CrossRef
  • Solubility of Endoseal and AH26 Root Canal Sealers
    Nooshin Fakhari, Ali Reza Mirjani, Abbas Bagheri, Jalil Modaresi
    Journal of Research in Dental and Maxillofacial Sciences.2024; 9(1): 1.     CrossRef
  • Novel bioactive nanospheres show effective antibacterial effect against multiple endodontic pathogens
    Jin Liu, Haoze Wu, Jun Qiu, Sirui Yang, Doudou Xiang, Xinhua Zhang, Jinxin Kuang, Min Xiao, Qing Yu, Xiaogang Cheng
    Heliyon.2024; 10(7): e28266.     CrossRef
  • Evaluation of canal patency and cleanliness following retreatment of bioceramic sealer‐obturated root canals using three different irrigant activation protocols
    Daiasharailang Lyngdoh, Sharique Alam, Huma Iftekhar, Surendra Kumar Mishra
    Australian Endodontic Journal.2024; 50(3): 475.     CrossRef
  • Antibiofilm Efficacy of Calcium Silicate-Based Endodontic Sealers
    Matilde Ruiz-Linares, Vsevolod Fedoseev, Carmen Solana, Cecilia Muñoz-Sandoval, Carmen María Ferrer-Luque
    Materials.2024; 17(16): 3937.     CrossRef
  • Enhancing the Biological Properties of Organic–Inorganic Hybrid Calcium Silicate Cements: An In Vitro Study
    Minji Choi, Jiyoung Kwon, Ji-Hyun Jang, Duck-Su Kim, Hyun-Jung Kim
    Journal of Functional Biomaterials.2024; 15(11): 337.     CrossRef
  • Cytotoxicity and cell migration evaluation of a strontium silicate-based root canal sealer on stem cells from rat apical papilla: an in vitro study
    Guanglei Zhou, Yu Zhao, Liangjing Cai, Liwei Liu, Xu Li, Lu Sun, Jiayin Deng
    BMC Oral Health.2024;[Epub]     CrossRef
  • An In Vitro Comparative Analysis of Physico–Mechanical Properties of Commercial and Experimental Bioactive Endodontic Sealers
    Abdulmajeed Kashaf, Faisal Alonaizan, Khalid S. Almulhim, Dana Almohazey, Deemah Abdullah Alotaibi, Sultan Akhtar, Ashwin C. Shetty, Abdul Samad Khan
    Bioengineering.2024; 11(11): 1079.     CrossRef
  • Chemical, Antibacterial, and Cytotoxic Properties of Four Different Endodontic Sealer Leachates Over Time
    Jo-Hsun Chen, Veksina Raman, Sarah A. Kuehne, Josette Camilleri, Josefine Hirschfeld
    Journal of Endodontics.2024; 50(11): 1612.     CrossRef
  • Comparative Analysis of Fracture Resistance of Endodontic Sealer Types and Filling Methods
    Yun Song, Kee-Deog Kim, Bock-Young Jung, Wonse Park, Nan-Sim Pang
    Materials.2024; 18(1): 40.     CrossRef
  • Comparative Evaluation of Removal of Bioceramic Sealers Using Rotary Retreatment Files Supplemented with Passive Ultrasonic Activation: An In Vitro Study
    Anuradha B Patil, Amrut Bambawale, Pooja R Barghare, Sumanthini V Margasahayam, Divya Naik, Jayeeta S Verma
    World Journal of Dentistry.2024; 15(4): 292.     CrossRef
  • Nonsurgical Endodontic Management of Nonperforating Internal Root Resorption in a Maxillary Central Incisor: A Case Report with a 4-Year Follow-Up
    Paras M. Gehlot, Divya S. Rajkumar, Annapoorna B. Mariswamy, Upendra Natha N. Reddy, Chaitanya Chappidi
    Journal of Pharmacy and Bioallied Sciences.2024; 16(Suppl 3): S3005.     CrossRef
  • Evaluating the Sealing Performance of Endodontic Sealers: Insights Into Achieving Complete Sealing
    Ajay Chhabra, Ramya K P., Saravana Prathap, Priyanka Yadav, Himani Mehra, Sona J Parvathy
    Cureus.2024;[Epub]     CrossRef
  • Effects of vehicles on the physical properties and biocompatibility of premixed calcium silicate cements
    Gitae SON, Gyeung Mi SEON, Sang Hoon CHOI, Hyeong-Cheol YANG
    Dental Materials Journal.2024; 43(2): 276.     CrossRef
  • Comparative cytotoxicity study of putty- and powder-type calcium silicate cements
    Sora Park, Dohyun Cho, Ji Hyeon Yoon, Yeonjoo Kang, Quang Canh Vo, Gitae Son, Hongjoo Park, Hyeong-Cheol Yang
    Korean Journal of Dental Materials.2024; 51(4): 259.     CrossRef
  • Physical-chemical properties and acellular bioactivity of newly prepared nano-tricalcium silicate-58s bioactive glass-based endodontic sealer
    Nawal A. Al-Sabawi, Sawsan Hameed Al-Jubori
    Journal of Oral Biosciences.2023; 65(4): 305.     CrossRef
  • Dentinal Tubule Penetrability and Bond Strength of Two Novel Calcium Silicate-Based Root Canal Sealers
    Karissa Shieh, Jack Yang, Elsa Heng Zhu, Ove Andreas Peters, Sepanta Hosseinpour
    Materials.2023; 16(9): 3309.     CrossRef
  • Cytotoxicity and Mineralization Activity of Calcium Silicate-Based Root Canal Sealers Compared to Conventional Resin-Based Sealer in Human Gingival Fibroblast Cells
    Mohammad Shokrzadeh, Farzaneh Sadat Motafeghi, Anahita Lotfizadeh, Mohammad Ghorbani, Azam Haddadi Kohsar, Cesar Rogério Pucci
    International Journal of Dentistry.2023; 2023: 1.     CrossRef
  • Effect of three different photosensitizers in photodynamic therapy on bond strength of a calcium silicate‐based sealer to radicular dentin
    Cihan Küden, Seda Nur Karakaş
    Australian Endodontic Journal.2023; 49(S1): 265.     CrossRef
  • Effect of endodontic sealer on postoperative pain: a network meta-analysis
    Cynthia Maria Chaves Monteiro, Ana Cristina Rodrigues Martins, Alessandra Reis, Juliana Larocca de Geus
    Restorative Dentistry & Endodontics.2023;[Epub]     CrossRef
  • Antimicrobial Activity of Five Calcium Silicate Based Root Canal Sealers against a Multispecies Engineered Biofilm: An In Vitro Study
    Carla Zogheib, Issam Khalil, Wajih Hage, Dolla Karam Sarkis, Mireille Kallasy, Germain Sfeir, May Mallah, Roula El Hachem
    The Journal of Contemporary Dental Practice.2023; 24(9): 707.     CrossRef
  • Calcium silicate sealers in endodontics
    Archana Chavan, Nidambur Ballal
    Acta stomatologica Naissi.2023; 39(87): 2624.     CrossRef
  • Assessing the Sealing Performance and Clinical Outcomes of Endodontic Treatment in Patients with Chronic Apical Periodontitis Using Epoxy Resin and Calcium Salicylate Seals
    Razvan Mihai Horhat, Bogdan Andrei Bumbu, Laura Orel, Oana Velea-Barta, Laura Cirligeriu, Gratiana Nicoleta Chicin, Marius Pricop, Mircea Rivis, Stefania Dinu, Delia Ioana Horhat, Felix Bratosin, Roxana Manuela Fericean, Rodica Anamaria Negrean, Luminita
    Medicina.2023; 59(6): 1137.     CrossRef
  • In Vitro Cytotoxicity and Mineralization Potential of an Endodontic Bioceramic Material
    Soumya Sheela, Mohannad Nassar, Fatma M. AlGhalban, Mehmet O. Gorduysus
    European Journal of Dentistry.2023; 17(02): 548.     CrossRef
  • Dislodgment Resistance, Adhesive Pattern, and Dentinal Tubule Penetration of a Novel Experimental Algin Biopolymer-Incorporated Bioceramic-Based Root Canal Sealer
    Galvin Sim Siang Lin, Norhayati Luddin, Huwaina Abd Ghani, Josephine Chang Hui Lai, Tahir Yusuf Noorani
    Polymers.2023; 15(5): 1317.     CrossRef
  • Impact of Final Irrigation Protocol on the Push-Out Bond Strength of Two Types of Endodontic Sealers
    Germain Sfeir, Frédéric Bukiet, Wajih Hage, Roula El Hachem, Carla Zogheib
    Materials.2023; 16(5): 1761.     CrossRef
  • Clinical Approaches to the Three-Dimensional Endodontic Obturation Protocol for Teeth with Periapical Bone Lesions
    Angela Gusiyska, Elena Dyulgerova
    Applied Sciences.2023; 13(17): 9755.     CrossRef
  • Evaluating the bioactivity of endodontic sealers with respect to their thermo-nanomechanical properties
    Andreea Marica, Luminita Fritea, Florin Banica, Iosif Hulka, Gerlinde Rusu, Cosmin Sinescu, Traian Octavian Costea, Simona Cavalu
    Materials Science-Poland.2023; 41(3): 126.     CrossRef
  • Advances and challenges in regenerative dentistry: A systematic review of calcium phosphate and silicate-based materials on human dental pulp stem cells
    B. Christie, N. Musri, N. Djustiana, V. Takarini, N. Tuygunov, M.N. Zakaria, A. Cahyanto
    Materials Today Bio.2023; 23: 100815.     CrossRef
  • Radiographic Evaluation of Periapical Healing Rates Between Bio-Ceramic Sealer and AH+ Sealer: A Retrospective Study
    Dalia Nayil Alharith, Iman T. Mansi, YoumnaElsaid Abdulmotalib, HebaFuad Amous, TagreedSuliman Aljulban, Haifa Mohammed Al Aiban, Sali Mohamad Haffar
    Annals of Dental Specialty.2023; 11(2): 124.     CrossRef
  • Obturation canalaire
    N. Linas, M.-L. Munoz-Sanchez, N. Decerle, P.-Y. Cousson
    EMC - Médecine buccale.2023; 16(5): 1.     CrossRef
  • Biodentine Inhibits the Initial Microbial Adhesion of Oral Microbiota In Vivo
    Ali Al-Ahmad, Michael Haendel, Markus Altenburger, Lamprini Karygianni, Elmar Hellwig, Karl Wrbas, Kirstin Vach, Christian Tennert
    Antibiotics.2022; 12(1): 4.     CrossRef
  • Pilot Evaluation of Sealer-Based Root Canal Obturation Using Epoxy-Resin-Based and Calcium-Silicate-Based Sealers: A Randomized Clinical Trial
    Minju Song, Min-Gyu Park, Sang-Won Kwak, Ruben H. Kim, Jung-Hong Ha, Hyeon-Cheol Kim
    Materials.2022; 15(15): 5146.     CrossRef
  • The antibacterial activity of mineral trioxide aggregate containing calcium fluoride
    Miyoung Lim, Seunghoon Yoo
    Journal of Dental Sciences.2022; 17(2): 836.     CrossRef
  • Physicochemical and Mechanical Properties of Premixed Calcium Silicate and Resin Sealers
    Naji Kharouf, Salvatore Sauro, Ammar Eid, Jihed Zghal, Hamdi Jmal, Anta Seck, Valentina Macaluso, Frédéric Addiego, Francesco Inchingolo, Christine Affolter-Zbaraszczuk, Florent Meyer, Youssef Haikel, Davide Mancino
    Journal of Functional Biomaterials.2022; 14(1): 9.     CrossRef
  • Comparison of Fracture Resistance between Single-cone and Warm Vertical Compaction Technique Using Bio-C Sealer® in Mandibular Incisors: An In Vitro Study
    Raphael Lichaa, George Deeb, Rami Mhanna, Carla Zogheib
    The Journal of Contemporary Dental Practice.2022; 23(2): 143.     CrossRef
  • In vitro physicochemical characterization of five root canal sealers and their influence on an ex vivo oral multi‐species biofilm community
    Flavia M. Saavedra, Lauter E. Pelepenko, William S. Boyle, Anqi Zhang, Christopher Staley, Mark C. Herzberg, Marina A. Marciano, Bruno P. Lima
    International Endodontic Journal.2022; 55(7): 772.     CrossRef
  • Premixed Calcium Silicate-Based Root Canal Sealer Reinforced with Bioactive Glass Nanoparticles to Improve Biological Properties
    Min-Kyung Jung, So-Chung Park, Yu-Jin Kim, Jong-Tae Park, Jonathan C. Knowles, Jeong-Hui Park, Khandmaa Dashnyam, Soo-Kyung Jun, Hae-Hyoung Lee, Jung-Hwan Lee
    Pharmaceutics.2022; 14(9): 1903.     CrossRef
  • A critical analysis of research methods and experimental models to study root canal fillings
    Gustavo De‐Deus, Erick Miranda Souza, Emmanuel João Nogueira Leal Silva, Felipe Gonçalves Belladonna, Marco Simões‐Carvalho, Daniele Moreira Cavalcante, Marco Aurélio Versiani
    International Endodontic Journal.2022; 55(S2): 384.     CrossRef
  • Bioactivity Potential of Bioceramic-Based Root Canal Sealers: A Scoping Review
    Mauro Schmitz Estivalet, Lucas Peixoto de Araújo, Felipe Immich, Adriana Fernandes da Silva, Nadia de Souza Ferreira, Wellington Luiz de Oliveira da Rosa, Evandro Piva
    Life.2022; 12(11): 1853.     CrossRef
  • The influence of humidity on bond strength of AH Plus, BioRoot RCS, and Nanoseal-S sealers
    Sunanda Laxman Gaddalay, Damini Vilas Patil, Ramchandra Kabir
    Endodontology.2022; 34(3): 202.     CrossRef
  • The Effect of Bioceramic HiFlow and EndoSequence Bioceramic Sealers on Increasing the Fracture Resistance of Endodontically Treated Teeth: An In Vitro Study
    Mohamad Khir Abdulsamad Alskaf, Hassan Achour, Hasan Alzoubi
    Cureus.2022;[Epub]     CrossRef
  • Unravelling the effects of ibuprofen-acetaminophen infused copper-bioglass towards the creation of root canal sealant
    Chitra S, Riju Chandran, Ramya R, Durgalakshmi D, Balakumar S
    Biomedical Materials.2022; 17(3): 035001.     CrossRef
  • A Micro-CT Analysis of Initial and Long-Term Pores Volume and Porosity of Bioactive Endodontic Sealers
    Mateusz Radwanski, Michal Leski, Adam K. Puszkarz, Jerzy Sokolowski, Louis Hardan, Rim Bourgi, Salvatore Sauro, Monika Lukomska-Szymanska
    Biomedicines.2022; 10(10): 2403.     CrossRef
  • A comprehensive in vitro comparison of the biological and physicochemical properties of bioactive root canal sealers
    Sabina Noreen Wuersching, Christian Diegritz, Reinhard Hickel, Karin Christine Huth, Maximilian Kollmuss
    Clinical Oral Investigations.2022; 26(10): 6209.     CrossRef
  • Stability and solubility test of endodontic materials
    Ivan Matovic, Jelena Vucetic
    Stomatoloski glasnik Srbije.2022; 69(4): 169.     CrossRef
  • Antimicrobial effectiveness of root canal sealers againstEnterococcus faecalis
    Paola Castillo-Villagomez, Elizabeth Madla-Cruz, Fanny Lopez-Martinez, Idalia Rodriguez-Delgado, Jorge Jaime Flores-Treviño, Guadalupe Ismael Malagon-Santiago, Myriam Angelica de La Garza-Ramos
    Biomaterial Investigations in Dentistry.2022; 9(1): 47.     CrossRef
  • Tricalcium silicate cement sealers
    Anita Aminoshariae, Carolyn Primus, James C. Kulild
    The Journal of the American Dental Association.2022; 153(8): 750.     CrossRef
  • Influence of variations in the environmental pH on the solubility and water sorption of a calcium silicate‐based root canal sealer
    E. J. N. L. Silva, C. M. Ferreira, K. P. Pinto, A. F. A. Barbosa, M. V. Colaço, L. M. Sassone
    International Endodontic Journal.2021; 54(8): 1394.     CrossRef
  • Calcium Silicate-Based Root Canal Sealers: A Narrative Review and Clinical Perspectives
    Germain Sfeir, Carla Zogheib, Shanon Patel, Thomas Giraud, Venkateshbabu Nagendrababu, Frédéric Bukiet
    Materials.2021; 14(14): 3965.     CrossRef
  • Development of A Nano-Apatite Based Composite Sealer for Endodontic Root Canal Filling
    Angelica Bertacci, Daniele Moro, Gianfranco Ulian, Giovanni Valdrè
    Journal of Composites Science.2021; 5(1): 30.     CrossRef
  • Bone repair in defects filled with AH Plus sealer and different concentrations of MTA: a study in rat tibiae
    Jessica Emanuella Rocha Paz, Priscila Oliveira Costa, Albert Alexandre Costa Souza, Ingrid Macedo de Oliveira, Lucas Fernandes Falcão, Carlos Alberto Monteiro Falcão, Maria Ângela Area Leão Ferraz, Lucielma Salmito Soares Pinto
    Restorative Dentistry & Endodontics.2021;[Epub]     CrossRef
  • Characterization, Antimicrobial Effects, and Cytocompatibility of a Root Canal Sealer Produced by Pozzolan Reaction between Calcium Hydroxide and Silica
    Mi-Ah Kim, Vinicius Rosa, Prasanna Neelakantan, Yun-Chan Hwang, Kyung-San Min
    Materials.2021; 14(11): 2863.     CrossRef
  • Synthesis and Characterization of Novel Calcium-Silicate Nanobioceramics with Magnesium: Effect of Heat Treatment on Biological, Physical and Chemical Properties
    Konstantina Kazeli, Ioannis Tsamesidis, Anna Theocharidou, Lamprini Malletzidou, Jonathan Rhoades, Georgia K. Pouroutzidou, Eleni Likotrafiti, Konstantinos Chrissafis, Theodoros Lialiaris, Lambrini Papadopoulou, Eleana Kontonasaki, Evgenia Lymperaki
    Ceramics.2021; 4(4): 628.     CrossRef
  • Calcium Silicate Cements vs. Epoxy Resin Based Cements: Narrative Review
    Mario Dioguardi, Cristian Quarta, Diego Sovereto, Giuseppe Troiano, Khrystyna Zhurakivska, Maria Bizzoca, Lorenzo Lo Muzio, Lucio Lo Russo
    Oral.2021; 1(1): 23.     CrossRef
  • In Vitro Microleakage Evaluation of Bioceramic and Zinc-Eugenol Sealers with Two Obturation Techniques
    Francesco De Angelis, Camillo D’Arcangelo, Matteo Buonvivere, Rachele Argentino, Mirco Vadini
    Coatings.2021; 11(6): 727.     CrossRef
  • Efficacy Of Calcium Silicate-Based Sealers In Root Canal Treatment: A Systematic Review
    Hattan Mohammed Omar Baismail, Mohammed Ghazi Moiser Albalawi, Alaa Mofareh Thoilek Alanazi, Muhannad Atallah Saleem Alatawi, Badr Soliman Alhussain
    Annals of Dental Specialty.2021; 9(1): 87.     CrossRef
  • Apical Sealing Ability of Two Calcium Silicate-Based Sealers Using a Radioactive Isotope Method: An In Vitro Apexification Model
    Inês Raquel Pereira, Catarina Carvalho, Siri Paulo, José Pedro Martinho, Ana Sofia Coelho, Anabela Baptista Paula, Carlos Miguel Marto, Eunice Carrilho, Maria Filomena Botelho, Ana Margarida Abrantes, Manuel Marques Ferreira
    Materials.2021; 14(21): 6456.     CrossRef
CanvasJS.com
CanvasJS.com
CanvasJS.com

  • ePub LinkePub Link
  • Cite
    CITE
    export Copy Download
    Close
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    Calcium silicate-based root canal sealers: a literature review
    Restor Dent Endod. 2020;45(3):e35  Published online June 9, 2020
    Close
  • XML DownloadXML Download
Calcium silicate-based root canal sealers: a literature review
Calcium silicate-based root canal sealers: a literature review

Root canal sealers reviewed in this article and their chemical compositions

Material baseProductsManufacturerComposition
ZOERoth's 801 [M]Roth International, Miami, FL, USAPowder: zinc oxide, staybelite resin, bismuth sub-carbonate, barium sulfate, sodium borate; Liquid: eugenol
Pulp Canal sealer [M]Kerr, Orange, CA, USAPowder: zinc oxide 30%–60%, 5,5′-diisopropyl-2,2′-dimethylbiphenyl-4,4′-diyl dihypoiodite 0.1%–5%; Liquid: eugenol 60%–90%, Canada balsam 10%–30%
Tubli Seal [M]Kerr, Orange, CA, USABase: zinc oxide 60%–100%, white mineral oil (petroleum) 10%–30%; Accelerator: eugenol 30%–60%, 5,5′-diisopropyl-2,2′-dimethylbiphenyl-4,4′-diyl dihypoiodite 5%–10%
Endo N2 [M]Ghimas, Casalecchio di Reno, ItalyPowder: zinc oxide 65.68%, nitrate bismuth 15.17%, carbonate bismuth 10.1%, paraformaldehyde 4%, titanium dioxide 4.76%, red ferric oxide 0.1%, zinc stearate 0.075%, dehydrate zinc acetate 0.075%, yellow ferric oxide 0.04%; Liquid: eugenol 77%, peanut oil 20%, rose oil 1.8%, lavender oil 1.2%
CHSealapex root canal sealer [M]Kerr, Orange, CA, USABase: N-ethyl-o (or p)-toluenesulfonamide 30%–60%, calcium oxide 30%–60%, zinc oxide 1%–5%, zinc distearate 1%–5%; Catalyst: methyl salicylate 10%–30%, 2,2 dimethylpropane-1,3-diol 1%–5%, isobutyl salicylate 1%–5%
Apexit Plus [M]Ivoclar Vivadent AG, Schaan, LiechtensteinBase: calcium hydroxide/calcium oxide 36.9%, hydrated colophonium 54%, fillers and other auxiliary materials 9.1%; Activator: disalicylate 47.6%, bismuth hydroxide/bismuth carbonate 36.4%, fillers and other auxiliary materials 16%
ERAH 26 [M]Dentsply DeTrey, Konstanz, GermanyPowder: methenamine 25%–50%, titanium dioxide 2.5%–10%, silver 2.5%; Liquid: bisphenol A/epichlorohydrin resin 50%–100%
AH Plus [M]Dentsply DeTrey, Konstanz, GermanyPaste A: bisphenol A diglycidylether 25%–50%, bis-[4-(-2,3-epoxypropoxy) phenyl]-methane 2.5%–10%; Paste B: N,N′-dibenzyl-5-oxanonandiamin-1,9 10%–25%, amantadine 2.5%–10%
Acroseal [M]Septodont, Saint-Maur-des-Fossés, FranceBase: resin acids, hydrogenated 25%–50%, TCD-diamine 10%–25%; Catalyst: bisphenol-A-(epichlorohydrin) epoxy resin 50%–100%, calcium dihydroxide 10%–25%
Easyseal [M]Komet Brasseler, GmbH Co., Lemgo, GermanyPaste 1: 4-[-2-(4-hydroxyphenyl) propan-2-yl] phenol-epichlorohydrine resin, alkylglycidyl ether, barium sulfate, tricalcium phosphate, diphenylolpropane-diglycidyl ether; Paste 2: polyalkoxyalkylamine-copolymer, 5-amino-1,3,3-trimethylcyclohexanmethylamine, aqua, barium sulfate, tricalcium phosphate, nanodispers silicone dioxide, polyhexamethylene biguanides-hydrochloride
Theramseal [M]Dentsply Meillefer, Konstanz, GermanyPaste A: epoxy resin, calcium tungstate, zirconium oxide, aerosol, iron oxide; Paste B: Adamantane amine, N,N′-dibenzyl-5-oxanonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide aerosol, silicone oil
Topseal [M]Dentsply Meillefer, Ballaigues, SwitzerlandPaste A: epoxy resin, calcium tungstate, zirconium oxide, aerosol, iron oxide; Paste B: adamantane amine, N,N′-dibenzyl-5-oxanonandiamin-1,9, TCD-diamine, calcium tungstate, zirconium oxide aerosol, silicone oil
MREndorez [M]Ultradent Product Inc., South Jordan, UT, USABase: diurethane dimethacrylate > 10 and ≤ 25%, triethylene glycol dimethacrylate > 10 and ≤ 25%, organophosphine oxide ≤ 2.5%, benzoyl peroxide ≤ 2.5%; Catalyst: diurethane dimethacrylate > 25 and ≤ 50%, triethylene glycol dimethacrylate > 10 and ≤ 25%
RealSeal (Eldeniz et al. [59])SybronEndo, Orange, CA, USAPEGDMA, EBPADMA, EDMA, BisGMA, silane-treated barium borosilicate glasses, barium sulphate, silica, calcium hydroxide, bismuth oxychloride with amines, peroxide, photoinitiator, stabilizers, pigment
RealSeal SE [59]SybronEndo, Orange, CA, USAEBPADMA, HEMA, BisGMA, acidic methacrylate resins, barium borosilicate glasses, silica, hydroxyapatite, Ca-Al-F-silicate, bismuth oxychloride with amines, peroxide, photoinitiator, stabilizers, pigment, aluminium oxide
Hybrid Root Seal [59]Sun Medical, Moriyama, JapanPowder: zirconium oxide filler, SiO2 filler, and polymerization initiators; Liquid: 60% 4-META, 40% HEMA, dimethacrylates
Epiphany (Nawal et al. [91])Pentron Clinical Technologies, Wallingford, CT, USAUDMA, PEGDMA, EBPADMA, BisGMA, silane-treated barium-borosilicate glasses, barium sulfate, silica, calcium hydroxide, bismuth oxychloride with amines, peroxide, photo initiator, stabilizers, pigment
SiliconeGuttaFlow [91]Coltene/Whaledent, DPI, Mumbai, IndiaPaste A (sealer): poly-dimethyl polymethyl hydrogen siloxane, silicone oil, paraffin oil, zirconium dioxide, platin catalyst; Paste B (powder): gutta percha (0.9 μm), zinc oxide, barium sulphate, nanosilver particles (as a preservative)
CPApatite root sealer (Al-Haddad and Che Ab Aziz ZA [92])Dentsply Sankin, Tokyo, JapanPowder: alpha tricalcium phosphate, hydroxyapatite, iodoform; Liquid: polyacrylic acid, water
CSiRoot SP [59]Innovative Bioceramix, Vancouver, BC, CanadaZirconium oxide, calcium silicates, calcium phosphate monobasic, calcium hydroxide, filler, thickening agent
MTA Fllapex [M]Angelus, Londrina, PR, BrazilPaste A: salicylate resin, bismuth trioxide, fumed silica; Paste B: fumed silica, titanium dioxide, MTA (40%, tricalcium silicate, dicalcium silicate, calcium oxide, tricalcium aluminate), base resin (pentaerythritol, rosinate, p-toluenesulfonamide)
EndoSequence BC [M]Brasseler, Savannah, GA, USAZirconium oxide 35%–45%, dicalcium silicate 7%–15%, tricalcium silicate 20%–35%, calcium hydroxide 1%–4%, fillers
TotalFill BC [M]FKG Dentaire, La Chaux-de-Fonds, SwitzerlandZirconium oxide 35%–45%, dicalcium silicate 7%–15%, tricalcium silicate 20%–35%, calcium hydroxide 1%–4%, fillers
Bioroot RCS [59]Septodont, Saint-Maur-des-Fossés, FrancePowder: tricalcium silicate, zirconium oxide and excipients; Aqueous solution: calcium chloride and excipients
Endoseal MTA [M]Maruchi, Wonju, KoreaCalcium silicate, calcium aluminates, calcium aluminoferrite, calcium sulfates, radiopacifier, thickening agent
Endo CPM [M]EGEO S.R.L. Bajo Licencia MTM Argentina S.A., Buenos Aires, ArgentinaMTA: silicon dioxide, calcium carbonate, bismuth trioxide, barium sulfate, propylene glycol alginate, sodium citrate, calcium chloride, active ingredients
Nano Ceramic Sealer (Collado-González et al. [63])B&L Biotech, Fairfax, VA, USACalcium silicate, zirconium oxide, filler, thickening agent

ZOE, zinc oxide-eugenol; CH, calcium hydroxide; ER, epoxy resin; MR, methacrylate resin; CP, calcium phosphate; CS, calcium silicate; M, provided from manufacturer; 4‐META, 4‐methacryloxyethyl trimellitic anhydride; HEMA, 2‐hydroxyethyl methacrylate; TCD, tricyclodecane; PEGDMA, polyethylene glycol dimethacrylate; EBPADMA, ethoxylated bisphenol A dimethacrylate; EDMA, 3,4-ethylenedioxy-N-methylamphetamine; BisGMA, bisphenol A-glycidyl methacrylate; UDMA, urethane dimethylate.

Dimensional stability of calcium silicate sealers in the articles included in this review

Material (CS)MethodCompared materialDimensional stability
BioRoot RCSDistilled waterAH Plus (ER), Pulp Canal Sealer (ZOE), MTA Fillapex (CS)Water sorption: BioRoot RCS > MTA Fillapex > Pulp Canal Sealer > AH Plus (Siboni, et al. [24])
Distilled waterSealapex (CH), AH Plus (ER), EasySeal (ER), Pulp Canal Sealer (ZOE), N2 (ZOE), TotalFill BC (CS), MTA Fillapex (CS)Solubility: TotalFill BC Sealer = BioRoot RCS > MTA Fillapex > N2 = Sealapex > Easyseal > Pulp Canal Sealer > AH Plus (Poggio et al. [31])
PBS, Distilled waterAH Plus (ER), MTA Fillapex (CS)Solubility: MTA Fillapex > BioRoot RCS > AH Plus (Urban et al. [22])
Distilled waterAH Plus (ER), Sealapex (CH), EasySeal (ER), TotalFill BC (CS), MTA Fillapex (CS)Solubility: TotalFill BC Sealer > BioRoot RCS > MTA Fillapex > Sealapex > Easy Seal > AH Plus (Colombo et al. [32])
PBS, Distilled waterAH Plus (ER), MTA Fillapex (CS)Solubility: BioRoot RCS > MTA Fillapex > AH Plus (Prüllage et al. [33])
iRoot SPDistilled waterSealapex (CH), EndoREZ (MR), AH Plus (ER)Water sorption: EndoREZ > iRoot SP > Sealapex > AH Plus; Solubility: Sealapex > iRoot SP = EndoREZ = AH Plus (Ersahan and Aydin [30])
Distilled waterAH Plus (ER), Sealapex (CH), MTA-Angelus (CS), MTA Fillapex (CS)Solubility: iRoot SP > MTA Fillapex > Sealapex > MTA Angelus = AH Plus (Borges et al. [28])
EndoSequence BCDistilled waterMTA Fillapex (CS), AH Plus (ER), ThermaSeal (ER), GuttaFlow (silicone), Pulp Canal Sealer (ZOE)Solubility: EndoSequence BC sealer > MTA Fillapex > Pulp Canal Sealer > AH Plus > GuttaFlow > ThermaSeal (Zhou et al. [29])
MTA FillapexDistilled waterAH Plus (ER)Solubility, water sorption: AH Plus > MTA Fillapex (Vitti et al. [25])

CS, calcium silicate; ER, epoxy resin; ZOE, zinc oxide-eugenol; CH, calcium hydroxide; MR, methacrylate resin.

Sealing ability of the calcium silicate sealers in the articles included in this review

Material (CS)MethodCompared materialSealing ability
BioRoot RCSSingle coneAH 26 (ER)Dentin penetration: BioRoot RCS > AH 26 (Uzunoglu-Özyürek et al. [93])
Lateral compactionAH Plus (ER)μCT void: AH Plus < BioRoot RCS; Fluid transport: BioRoot RCS = AH Plus (Viapiana et al. [94])
Single cone, Continuous waveEndoseal MTA (CS), AH Plus (ER)Dentin penetration: AH Plus > BioRoot RCS > Endoseal (Kim et al. [35])
Endoseal MTASingle cone, Continuous waveAH-Plus (ER), GuttaFlow (silicone)Bacterial leakage: GuttaFlow > Endoseal MTA = AH Plus (Hwang et al. [95])
EndoSequence BCSingle cone, Lateral compactionAH 26 (ER), EndoREZ (MR)Fluid transport: AH 26, EndoRez < EndoSequence BC Sealer (Deniz Sungur et al. [96])
Single cone, Continuous waveAH 26 (ER)Endotoxin leakage: EndoSequence BC sealer > AH 26 (Oh et al. [97])
Continuous waveAH Plus (ER), Epiphany (ER), MTA Plus (CS)Dye penetration: EndoSequence BC sealer = Epiphany < AH Plus (Pawar et al. [37])
Lateral compactionSealapex (CH), AH Plus (ER), EndoREZ (MR)Dye penetration: Endosequence BC sealer < EndoRez < Sealapex = MTA Plus < AH plus (Ballullaya et al. [36])
iRoot SPLateral compactionSealapex (CH), EndoREZ (MR), AH Plus (ER)Fluid transport: iRoot SP = AH Plus < EndoREZ = Sealapex (Ersahan and Aydin [30])
Single cone, Continuous waveAH Plus (ER)Fluid transport: iRoot SP = AH Plus (Zhang et al. [48])
Single cone, Continuous waveTopseal (ER)Penentration of sealer: iRoot SP < Topseal; Penetration of sealer: Single-point technique < Continuous wave of condensation (Fernández et al. [49])
Lateral compactionMTA Fillapex (CS)Fluid transport: iRoot SP < MTA Fillapex (Bidar et al. [98])
Lateral compactionHybrid Root SEAL (MR), EndoREZ (ER), AH Plus (ER)Fluid transport: AH Plus = EndoREZ < iRoot SP < Hybrid Root SEAL (Ulusoy et al. [99])
MTA FillapexWarm vertical compactionAH Plus (ER)Fluid transport: AH Plus < MTA Fillapex after 7 days, AH Plus > MTA Fillapex after 4 weeks (Asawaworarit et al. [23])

CS, calcium silicate; ER, epoxy resin; μCT, micro-computed tomography; CH, calcium hydroxide; MR, methacrylate resin.

Push-out bond strength of the calcium silicate sealers in the articles included in this review

Material (CS)MethodCompared materialPush-out bond strength
BioRoot RCSSingle coneAH Plus (ER), GuttaFlow2 (silicone)AH Plus > BioRoot RCS > GuttaFlow 2 (Donnermeyer et al. [100])
Endoseal MTANo obturationAH Plus (ER), MTA Fillapex (CS)AH Plus > Endoseal MTA > MTA Fillapex (Silva et al. [101])
EndoSequence BCLateral compaction, Thermoplasticized injection technologyAH Plus (ER), MTA Plus Sealer (CS)AH Plus > EndoSequence BC sealer; lateral compaction > Thermoplasticized injection (Dabaj et al. [55])
Single cone, Continuous waveAH Plus (ER)EndoSequence BC sealer = AH Plus > MTA Plus; Single cone > Continuous wave (DeLong et al. [51])
iRoot SPNo obturationAH Plus (ER), EndoREZ (ER), Sealapex (CH)iRoot SP = AH Plus > EndoREZ = Sealapex (Ersahan and Aydin [102])
Single coneRealSeal SE (MR), AH Plus (ER), MTA Fillapex (CS)AH Plus = iRoot SP > MTA Fillapex > RealSeal SE (Nagas et al. [50])
BioRoot RCSNo obturationTotalFill BC (CS), AH Plus (ER), Endo CPM (CS)AH Plus > TotalFill BC Sealer > BioRoot RCS > Endo CPM Sealer (Donnermeyer et al. [2021])

CS, calcium silicate; ER, epoxy resin; CH, calcium hydroxide; MR, methacrylate resin.

Biocompatibility of the calcium silicate sealers in the articles included in this review

MaterialCells usedCompared materialBiocompatibility
iRoot SPL929 mouse fibroblastsAH Plus (ER), ProRoot MTAProRoot MTA > iRoot SP > AH Plus (Zhang et al. [57])
MG 63 human osteoblast-like cellsAH Plus (ER)iRoot SP: non-toxic, AH Plus: slightly cytotoxic (Zhang et al. [85])
hTGSCsProRoot MTA, Dycal (CH)ProRoot MTA and iRoot SP: no cytotoxicity, Dycal: cytotoxicity (Güven et al. [87])
hPDLSealapex (CH), Apatite root sealer (CP), MTA Fillapex (CS)None of the sealers were cytotoxic (Chang et al. [58])
EndoSequence BCMC3T3-E1 mouse osteoblast cellsAH Plus (ER), Pulp Canal Sealer (ZOE)AH Plus > EndoSequence BC > Pulp Canal Sealer (Loushine et al. [69])
AH Plus (ER), MTA Fillapex (CS)EndoSequence BC, MTA Fillapex > AH plus (Lee et al. [70])
Human gingival fibroblastsMTA Fillapex (CS), AH Plus (ER)EndoSequence BC > AH plus > MTA Fillapex, AH Plus was cytotoxic as freshly mixed (Zhou et al. [65])
Balb/c3T3 mouse fibroblastEndoseal MTA, MTA Fillapex (CS), AH Plus (ER)Endoseal MTA, EndoSequence BC Sealer and AH Plus: similar cell viability, MTA Fillapex sealer: cytotoxic (da Silva et al. [67])
BioRoot RCShPDLMTA-Fillapex, TotalFill BC (CS), GuttaFlow 2 (siolicone), AH Plus (ER), Roth's 801 (ZOE)GuttaFlow 2 > TotalFill > BioRoot > MTA Fillapex > AH Plus > Roth's 801 (Taraslia et al. [61])
MTA Fillapex (CS), AH Plus (ER), Pulp Canal Sealer (ZOE)Bioroot RCS > AH Plus > MTA Fillapex, Pulp Canal Sealer (Jung et al. [60])
AH Plus Jet, Acroseal (ER), EndoREZ, RealSeal, RealSeal SE, Hybrid Root Seal (MR), iRootSP, MTA Fillapex (CS)BioRoot RCS > iRoot SP > MTA Fillapex > EndoREZ > AH Plus Jet > RealSeal SE > Acroseal > Realseal > Hybrid Root seal (Eldeniz et al. [59])
HGF-1 (ATCC CRL-2014)TotalFill BC, MTA Fillapex (CS), Sealapex (CH), AH Plus, EasySeal (ER), Pulp Canal Sealer, N2 (ZOE)BioRoot RCS, TotalFill BC Sealer and AH Plus: no cytotoxic effects in the first 24 hr, All the other sealers: cytotoxic (Poggio et al. [31])
EasySeal, AH Plus (ER), SealapexTM (CH), MTA Fillapex, TotalFill BC (CS)BioRoot RCS, TotalFill BC > AH Plus, Sealapex TM > EasySeal, MTA Fillapex (Colombo et al. [32])
Human bone marrow mesenchymal stem cellsEndoSequence BC (CS), AH Plus (ER)BioRoot RCS, Endosequece BC > AH Plus (Alsubait et al. [103])
Endoseal MTAMC3T3-E1 mouse osteoblast cellsProRoot MTA, AH plus (ER)ProRoot MTA, Endosael MTA > AH Plus (Lim et al. [104])
hPDLSCsBioroot RCS, Endoseal MTA, Nano Ceramic Sealer (CS)Bioroot RCS, Nano Ceramic Sealer > Endoseal MTA (Collado-González et al. [63])
Human gingival fibroblastAH Plus (ER), MTA Fillapex, BioRoot RCS (CS)MTA Fillapex > Bioroot RCS > AH plus > Endoseal MTA (Kebudi Benezra et al. [64])

MR, methacrylate resin; ER, epoxy resin; hTGSC, human tooth germ stem cell; CH, calcium hydroxide; hPDL, human periodontal ligament; CP, calcium phosphate; ZOE, zinc oxide-eugenol; CS, calcium silicate; HGF-1, human gingival fibroblast; hPDLSC, human periodontal ligament stem cell.

Antibacterial effects on Enterococcus faecalis of the various calcium silicate sealers in the articles included in this review

MaterialCompared material (based material)Test methodSealer settingEvaluation timeAntibacterial effect against E. faecalis
iRoot SPAH Plus (ER), Epiphany, EndoRez (MR), Apexit Plus, Sealapex (CH), Tubli Seal EWT (ZOE)DCTFresh, 1, 3, and 7 days2–60 minFresh: iRoot SP, AH Plus, EndoRez, Sealapex, Epiphany; 1 day and 3 days: iRoot SP, EndoRez > Sealapex, Epiphany; 7 days: EndoRez, Sealapex (Zhang et al. [71])
AH Plus (ER), Tubliseal EWT (ZOE), EndoRez (MR)DCT20 minEvery 30 min up to 18 hrAH Plus, iRoot SP (Nirupama et al. [81])
EndoSequence BCAH Plus (ER)ADTFresh48 hrAH Plus > EndoSequence BC (Candeiro et al. [77])
DCTFresh1, 24, 72, 168 hrAH Plus > EndoSequence BC up to 1 hr, after 1 hr, similar effects [77]
AH Plus (ER), Pulp Canal Sealer (ZOE)CLSMFresh1, 7, 30 daysEndoSequence BC, AH Plus > Pulp Canal Sealer (Wang et al. [79])
GuttaFlow (silicone), Pulp Canal Sealer (ZOE), AH Plus Jet (ER)SEM24 hr24 hrPulp Canal Sealer (Willershausen et al. [83])
BioRootRCSMTA Fillapex (CS), AH Plus (ER)ADT24 hr24 hrBioroot RCS, AH Plus > MTA Fillapex (Arias-Moliz and Camilleri [78])
CLSM24 hr7 daysBioRoot RCS > MTA Fillapex > AH Plus [78]
TotalFill BC (CS), AH Plus (ER)CLSMFresh1, 7, 30 daysBioRoot RCS > TotalFill BC, AH Plus after 30 days (Alsubait et al. [80])
EasySeal, AH Plus (ER), SealapexTM (CH), TotalFill BC, MTA Fillapex (CS)ADTFresh48 hrEasySeal > AH Plus > BioRoot RCS, Sealapex, MTA Fillapex (Colombo et al. [32])
DCT7 day6, 15, 60 min6 min: TotalFill BC, Easyseal > Bioroot RCS > MTA Fillapex
15, 60 min: BioRoot RCS, TotalFill BC, EasySeal > MTA Fillapex, Sealapex > AH Plus (Colombo et al. [32])
Endoseal MTAAH Plus (ER), Sealapex (CH), Tubli-Seal (ZOE), EndoSequence BC (CS)DCTBefore and after setting24 hrEndoseal MTA > Sealapex > TubliSeal > AH Plus > EndoSequence BC
All sealers had less effect after setting (Shin et al. [82])

ER, epoxy resin; MR, methacrylate resin; CH, calcium hydroxide; ZOE, zinc oxide-eugenol; DCT, direct contact test; ADT, agar diffusion test; CLSM, confocal laser scanning microscopy; SEM, scanning electron microscopy; CS, calcium silicate.

Bioactivity of the calcium silicate sealers in the articles included in this review

MaterialCompared materialCells usedMineralization potential
iRoot SPAH Plus (ER)MG 63 human osteoblast-like cellsCOL 1, OCN and BSP mRNA expression up-regulation: iRoot SP > AH Plus (Zhang et al. [85])
ProRoot MTA, Dycal (CH)hTGSCsCOL 1A and DSPP mRNA expression: MTA > iRoot SP (Güven et al. [87])
Sealapex (CH), Apatite root sealer (CP), MTA Fillapex (CS)Human PDL cellsALP, mineralization nodule up-regulation: all sealers except for Sealapex; ON, OPN, OCN, Osterix, Runx2: MTA Fillapex > Apatitie root sealer > iRoot SP > Sealapex (Chang et al. [58])
EndoSequence BCAH Plus (ER), MTA Fillapex (CS)MC3T3-E1 mouse osteoblast cellsAll sealers increased ALP, OCN and alizarin red staining mineral: Calcium silicate sealers > AH Plus (Lee et al. [70])
BioRoot RCSPulp Canal Sealer (ZOE)hPDL, Mouse pulp-derived stem cell line A4BMP2, TGF2: BioRoot RCS > Pulp Canal Sealer (Camps et al. [86]); VEGF: BioRoot = Pulp Canal Sealer (Camps et al. [86]); COL1, DMP1, BSP expression: BioRoot RCS preserved the intrinsic ability, but Pulp Canal Sealer reduced the ability (Dimitrova-Nakov et al. [89])
AH Plus (ER), MTA Fillapex (CS), Pulp Canal Sealer (ZOE)Calcium release, pH, nucleation of CaP after aging 28 dayBioRoot RCS > MTA Fillapex > AH Plus > Pulp Canal Sealer (Siboni et al. [24])
BiodentineHuman dental pulp stem cellBoth of them; Mineralization matrix induction: up-regulation; ALP, COL A1, OPN: down-regulation; Runx2: unmodified; Nestin, Msx2: up-regulation; DSPP expressed in direct contact with Biodentine, but BioRoot RCS needed mineralizing conditions, i.e., phosphate ions (Loison-Robert et al. [88])
Endoseal MTAProRoot MTAIntratubular biomineralizationEndoseal MTA enhanced biomineralization of dentinal tubules (Yoo et al. [90])

ER, epoxy resin; COL, collagen; OCN, osteocalcin; BSP, bone sialoprotein; CH, calcium hydroxide; hTGSC, human tooth germ stem cell; DSPP, dentin sialophosphoprotein; CP, calcium phosphate; CS, calcium silicate; PDL, periodontal ligament; ALP, alkaline phosphatase; ON, osteonectin; OPN, osteopontin; Runx, runt-related transcription factor; ZOE, zinc oxide-eugenol; hPDL, human periodontal ligament; BMP, bone morphogenic protein; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; DMP, dentin matrix protein; BSP, bone sialoprotein; CaP, calcium phosphate; Msx, msh homeobox.

Table 1 Root canal sealers reviewed in this article and their chemical compositions

ZOE, zinc oxide-eugenol; CH, calcium hydroxide; ER, epoxy resin; MR, methacrylate resin; CP, calcium phosphate; CS, calcium silicate; M, provided from manufacturer; 4‐META, 4‐methacryloxyethyl trimellitic anhydride; HEMA, 2‐hydroxyethyl methacrylate; TCD, tricyclodecane; PEGDMA, polyethylene glycol dimethacrylate; EBPADMA, ethoxylated bisphenol A dimethacrylate; EDMA, 3,4-ethylenedioxy-N-methylamphetamine; BisGMA, bisphenol A-glycidyl methacrylate; UDMA, urethane dimethylate.

Table 2 Dimensional stability of calcium silicate sealers in the articles included in this review

CS, calcium silicate; ER, epoxy resin; ZOE, zinc oxide-eugenol; CH, calcium hydroxide; MR, methacrylate resin.

Table 3 Sealing ability of the calcium silicate sealers in the articles included in this review

CS, calcium silicate; ER, epoxy resin; μCT, micro-computed tomography; CH, calcium hydroxide; MR, methacrylate resin.

Table 4 Push-out bond strength of the calcium silicate sealers in the articles included in this review

CS, calcium silicate; ER, epoxy resin; CH, calcium hydroxide; MR, methacrylate resin.

Table 5 Biocompatibility of the calcium silicate sealers in the articles included in this review

MR, methacrylate resin; ER, epoxy resin; hTGSC, human tooth germ stem cell; CH, calcium hydroxide; hPDL, human periodontal ligament; CP, calcium phosphate; ZOE, zinc oxide-eugenol; CS, calcium silicate; HGF-1, human gingival fibroblast; hPDLSC, human periodontal ligament stem cell.

Table 6 Antibacterial effects on Enterococcus faecalis of the various calcium silicate sealers in the articles included in this review

ER, epoxy resin; MR, methacrylate resin; CH, calcium hydroxide; ZOE, zinc oxide-eugenol; DCT, direct contact test; ADT, agar diffusion test; CLSM, confocal laser scanning microscopy; SEM, scanning electron microscopy; CS, calcium silicate.

Table 7 Bioactivity of the calcium silicate sealers in the articles included in this review

ER, epoxy resin; COL, collagen; OCN, osteocalcin; BSP, bone sialoprotein; CH, calcium hydroxide; hTGSC, human tooth germ stem cell; DSPP, dentin sialophosphoprotein; CP, calcium phosphate; CS, calcium silicate; PDL, periodontal ligament; ALP, alkaline phosphatase; ON, osteonectin; OPN, osteopontin; Runx, runt-related transcription factor; ZOE, zinc oxide-eugenol; hPDL, human periodontal ligament; BMP, bone morphogenic protein; TGF, transforming growth factor; VEGF, vascular endothelial growth factor; DMP, dentin matrix protein; BSP, bone sialoprotein; CaP, calcium phosphate; Msx, msh homeobox.


Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP Mpgyi