This study examined the effects of additional acid etching on the dentin bond strength of one-step self-etch adhesives with different compositions and pH. The effect of ethanol wetting on etched dentin bond strength of self-etch adhesives was also evaluated.
Forty-two human permanent molars were classified into 21 groups according to the adhesive types (Clearfil SE Bond [SE, control]; G-aenial Bond [GB]; Xeno V [XV]; Beauti Bond [BB]; Adper Easy Bond [AE]; Single Bond Universal [SU]; All Bond Universal [AU]), and the dentin conditioning methods. Composite resins were placed on the dentin surfaces, and the teeth were sectioned. The microtensile bond strength was measured, and the failure mode of the fractured specimens was examined. The data were analyzed statistically using two-way ANOVA and Duncan's
In GB, XV and SE (pH ≤ 2), the bond strength was decreased significantly when the dentin was etched (
The effect of additional acid etching on the dentin bond strength was influenced by the pH of one-step self-etch adhesives. Ethanol wetting on etched dentin could create a stronger bonding performance of one-step self-etch adhesives for acid etched dentin.
This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers.
25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's
Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (
Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.
To investigate the effect of dentin moisture degree and air-drying time on dentin-bond strength of two different one-step self-etching adhesive systems.
Twenty-four human third molars were used for microtensile bond strength testing of G-Bond and Clearfil S3 Bond. The dentin surface was either blot-dried or air-dried before applying these adhesive agents. After application of the adhesive agent, three different air drying times were evaluated: 1, 5, and 10 sec. Composite resin was build up to 4 mm thickness and light cured for 40 sec with 2 separate layers. Then the tooth was sectioned and trimmed to measure the microtensile bond strength using a universal testing machine. The measured bond strengths were analyzed with three-way ANOVA and regression analysis was done (
All three factors, materials, dentin wetness and air drying time, showed significant effect on the microtensile bond strength. Clearfil S3 Bond, dry dentin surface and 10 sec air drying time showed higher bond strength.
Within the limitation of this experiment, air drying time after the application of the one-step self-etching adhesive agent was the most significant factor affecting the bond strength, followed by the material difference and dentin moisture before applying the adhesive agent.
The purpose of this study was to evaluate the effect of various application methods of one-step self-etch adhesives to microtensile resin-dentin bond strength.
Thirty-six extracted human molars were used. The teeth were assigned randomly to twelve groups (
Manual agitation and ultrasonic agitation of adhesive significantly increased the microtensile bond strength than single coating and double coating did. Double coating of adhesive significantly increased the microtensile bond strength than single coating did and there was no significant difference between the manual agitation and ultrasonic agitation group. There was significant difference in microtensile bonding strength among all adhesives and Clearfil Tri-S Bond showed the highest bond strength.
In one-step self-etching adhesives, there was significant difference according to application methods and type of adhesives. No matter of the material, the manual or ultrasonic agitation of the adhesive showed significantly higher microtensile bond strength.
The purpose of this experiment was to evaluate four different polishing systems of their polishability and polishing time.
4 mm diameter and 2 mm thickness Teflon mold was made. Z-250 (3M ESPE) hybrid composite resin was slightly overfilled and pressed with slide glass and cured with Optilux 501 for 40 sec each side. Then the surface roughness (glass pressed: control group) was measured with profilometer. One surface of the specimen was roughened by #320 grit sand paper and polished with one of the following polishing systems; Sof-Lex (3M ESPE), Jiffy (Ultradent), Enhance (Dentsply/Caulk), or Pogo (Dentsply/Caulk). The surface roughness and the total polishing time were measured. The results were analyzed with one-way ANOVA and Duncan's multiple range test.
The surface roughness was lowest in Pogo, and highest in Sof-Lex. Polishing times were shortest with Pogo, and followed by the Sof-Lex, Enhance and Jiffy.
One-step polishing system (Pogo) is very effective to get the smooth surface in a short time, therefore it can be recommended for final polishing system of the restoration.
This study examined the effect of 2% chlorhexidine on the µTBS of a direct composite restoration using one-step self-etch adhesives on human dentin.
Twenty-four extracted permanent molars were used. The teeth were assigned randomly to six groups (
Regardless of the application of chlorhexidine, the Clearfil S3 Bond showed the highest µTBS, followed by G-Bond and Xeno V. Adhesive failure was the main failure mode of the dentin bonding agents tested with some samples showing cohesive failure.
The application of 2% chlorhexidine did not affect the µTBS of the resin composite to the dentin using a one-step self-etch adhesive.
The purpose of this study was to evaluate the effect of additional etching procedure prior to Maxcem resin cement application in indirect restoration cementation using push-out bonding strength.
One hundred and two extracted human molars were used to make indirect resin restorations of gold inlay and Synfony. These restorations were cemented using Maxcem and Variolink II. Additional etching procedures were done for one group with Maxcem. Three groups have 17 specimens in both restoration types. Push-out bond strength was measured using multi-purpose tester and calculated for bonding strength per sqaure-millimeter area. The mean bonding strength values were compared using SPSS 12.0K program for one-way ANOVA and Scheffe's Test with 95% significance.
Under the condition of this study, the additional etching procedure prior to usage of Maxcem resulted in reduced bond strength for both of restoration types.
The purpose of this study was to evaluate the effect of increasing application time of single bottle adhesives (SBA) to microtensile bond strength (MTBS) of dried dentin. To expose the superficial dentin surfaces, human molars were sectioned perpendicular to the long axis of tooth. 32% phosphoric acid gels were applied for 15s and rinsed. The teeth were randomly assigned to 3 groups ; S group (Single Bond), O group (One-Step), P group (Prime & Bond NT). Each group was divided to 3 subgroups (W: dentin wipe with wet gauge and light cured immediately, D: dentin dried for 30s and light cured immediately, 30: dentin dried for 30s and light cured after applying SBA for 30s). Composite resin was built up on the dentin surface and sectioned to obtain 20 specimens with 1 mm2 cross sectional area and the MTBS was measured.
For Single Bond, the mean MTBS of S-W and S-30 group were higher than that of S-D group statistically (P < 0.05). For One-Step, the mean MTBS of O-D group was statistically lower than that of O-W group (P < 0.05). For Prime & Bond NT, the mean MTBS of P-30 group was statistically lower than that of P-D group (P < 0.05).
This study evaluated the influence of a desensitizer(MS coat) on microtensile bond strength of different adhesives: a three-step adhesive(All-Bond 2), a two-step adhesive(Single Bond), a one-step adhesive(One-up Bond F).
Non-caries extracted human molars were used. Dentin surface was obtained by horizontal section on midportion of crown using a water-cooled low speed diamond saw. Teeth were randomly divided into 6 group. AMO(MS coat + All Bond)-, SMO(MS coat + Single Bond)- and OMO(MS coat + One-up Bond F)-dentin surface were treated with 17% EDTA before bonded adhesive. AMX-, SMX- and OMX-dentin surface were bonded with All-Bond 2, Single Bond and One-up Bond F, respectively, with no previous treatment with MS coat and 17% EDTA. About 1cm high resin composite(Z-250™) were incrementally build-up on the treated surface. The specimens for the microtensile test were serially sectioned perpendicular to the adhesive layer to obtain 0.7×0.7 mm sticks. 30 sticks were prepared from each group.
After that, tensile bond strength for each stick was measured with Microtensile Tester at a 1mm/min crosshead speed. Fractured dentin surfaces were observed under the SEM. The results were statistically analysed by using a One-way ANOVA and Tukey's test(p<0.05).
Value in MPa were: AMO-44.35±13.21; SMO-39.35±13.32; OMO-31.07±10.25; AMX-49.22±16.38; SMX-56.02±13.35; OMX-72.93±16.19. Application of MS coat reduced microtensile bond strengths of both Single Bond and One-up Bond F, whereas microtensile bond strengths of All-Bond 2 were not affected significantly.