Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Search

Page Path
HOME > Search
25 "Curing"
Filter
Filter
Article category
Keywords
Publication year
Authors
Research Articles
Effects of 3 different light-curing units on the physico-mechanical properties of bleach-shade resin composites
Azin Farzad, Shahin Kasraei, Sahebeh Haghi, Mahboubeh Masoumbeigi, Hassan Torabzadeh, Narges Panahandeh
Restor Dent Endod 2022;47(1):e9.   Published online February 7, 2022
DOI: https://doi.org/10.5395/rde.2022.47.e9
AbstractAbstract PDFPubReaderePub
Objectives

This study investigated the microhardness, flexural strength, and color stability of bleach-shade resin composites cured with 3 different light-curing units.

Materials and Methods

In this in vitro experimental study, 270 samples were fabricated of bleach and A2 shades of 3 commercial resin composites (Point 4, G-aenial Anterior, and Estelite Sigma Quick). Samples (n = 5 for each trial) were cured with Bluephase N, Woodpecker LED.D, and Optilux 501 units and underwent Vickers microhardness and flexural strength tests. The samples were tested after 24 hours of storage in distilled water. Color was assessed using a spectrophotometer immediately after preparation and 24 hours after curing. Data were analyzed using 3-way analysis of variance and the Tukey test (p ≤ 0.001).

Results

Samples cured with Optilux exhibited the highest and those cured with LED.D exhibited the lowest microhardness (p = 0.023). The bleach shade of Point 4 composite cured with Optilux displayed the highest flexural strength, while the same composite and shade cured with Sigma Quick exhibited the lowest (p ≤ 0.001). The color change after 24 hours was greatest for the bleach shade of G-aenial cured with Bluephase N and least for the A2 shade of Sigma Quick cured with Optilux (p ≤ 0.001).

Conclusions

Light curing with polywave light-emitting diode (LED) yielded results between or statistically similar to those of quartz-tungsten-halogen and monowave LED in the microhardness and flexural strength of both A2 and bleach shades of resin composites. However, the brands of light-curing devices showed significant differences in color stability.

  • 23 View
  • 1 Download
  • 2 Web of Science
Close layer
Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging
Abdulrahman A. Balhaddad, Isadora M. Garcia, Haifa Maktabi, Maria Salem Ibrahim, Qoot Alkhubaizi, Howard Strassler, Fabrício M. Collares, Mary Anne S. Melo
Restor Dent Endod 2021;46(4):e51.   Published online September 24, 2021
DOI: https://doi.org/10.5395/rde.2021.46.e51
AbstractAbstract PDFPubReaderePub
Objectives

This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year.

Materials and Methods

Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy.

Results

For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01).

Conclusions

The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

  • 25 View
  • 1 Download
  • 2 Web of Science
Close layer
Effect of adhesive application method on repair bond strength of composite
Hee Kyeong Oh, Dong Hoon Shin
Restor Dent Endod 2021;46(3):e32.   Published online June 4, 2021
DOI: https://doi.org/10.5395/rde.2021.46.e32
AbstractAbstract PDFPubReaderePub
Objectives

This study aimed to evaluate the effect of the application method of universal adhesives on the shear bond strength (SBS) of repaired composites, applied with different thicknesses.

Materials and Methods

The 84 specimens (Filtek Z350 XT) were prepared, stored in distilled water for a week and thermocycled (5,000 cycles, 5°C to 55°C). They were roughened using 400-grit sandpapers and etched with phosphoric acid. Then, specimens were equally divided into 2 groups; Single Bond Universal (SU) and Prime&Bond Universal (PB). Each group was subdivided into 3 subgroups according to application methods (n = 14); UC: 1 coat + uncuring, 1C: 1 coat + curing, 3C: 3 coats + curing. After storage of the repaired composite for 24 hours, specimens were subjected to the SBS test and the data were statistically analyzed by 2-way analysis of variance and independent t-tests. Specimens were examined with a stereomicroscope to analyze fracture mode and a scanning electron microscope to observe the interface.

Results

Adhesive material was a significant factor (p = 0.001). Bond strengths with SU were higher than PB. The highest strength was obtained from the 1C group with SU. Bonding in multiple layers increased adhesive thicknesses, but there was no significant difference in SBS values (p = 0.255). Failure mode was predominantly cohesive in old composites.

Conclusions

The application of an adequate bonding system plays an important role in repairing composite resin. SU showed higher SBS than PB and the additional layers increased the adhesive thickness without affecting SBS.

  • 31 View
  • 1 Download
Close layer
Assessment of the radiant emittance of damaged/contaminated dental light-curing tips by spectrophotometric methods
Abdulrahman A. Balhaddad, Isadora Garcia, Fabrício Collares, Cristopher M. Felix, Nisha Ganesh, Qoot Alkabashi, Ward Massei, Howard Strassler, Mary Anne Melo
Restor Dent Endod 2020;45(4):e55.   Published online November 3, 2020
DOI: https://doi.org/10.5395/rde.2020.45.e55
AbstractAbstract PDFPubReaderePub
Objectives

This study investigated the effects of physically damaged and resin-contaminated tips on radiant emittance, comparing them with new undamaged, non-contaminated tips using 3 pieces of spectrophotometric laboratory equipment.

Materials and Methods

Nine tips with damage and/or resin contaminants from actual clinical situations were compared with a new tip without damage or contamination (control group). The radiant emittance was recorded using 3 spectrophotometric methods: a laboratory-grade thermopile, a laboratory-grade integrating sphere, and a portable light collector (checkMARC).

Results

A significant difference between the laboratory-grade thermopile and the laboratory-grade integrating sphere was found when the radiant emittance values of the control or damaged/contaminated tips were investigated (p < 0.05), but both methods were comparable to checkMARC (p > 0.05). Regardless of the method used to quantify the light output, the mean radiant emittance values of the damaged/contaminated tips were significantly lower than those of the control (p < 0.05). The beam profile of the damaged/contaminated tips was less homogeneous than that of the control.

Conclusions

Damaged/contaminated tips can reduce the radiant emittance output and the homogeneity of the beam, which may affect the energy delivered to composite restorations. The checkMARC spectrophotometer device can be used in dental offices, as it provided values close to those produced by a laboratory-grade integrated sphere spectrophotometer. Dentists should assess the radiant emittance of their light-curing units to ensure optimal curing in photoactivated, resin-based materials.

  • 27 View
  • 0 Download
Close layer
Light transmittance of CAD/CAM ceramics with different shades and thicknesses and microhardness of the underlying light-cured resin cement
Zahra Jafari, Homayoon Alaghehmand, Yasaman Samani, Mina Mahdian, Soraya Khafri
Restor Dent Endod 2018;43(3):e27.   Published online June 4, 2018
DOI: https://doi.org/10.5395/rde.2018.43.e27
AbstractAbstract PDFPubReaderePub
Objectives

The aim of this in vitro study was to evaluate the effects of the thickness and shade of 3 types of computer-aided design/computer-aided manufacturing (CAD/CAM) materials.

Materials and Methods

A total of 120 specimens of 2 shades (A1 and A3) and 2 thicknesses (1 and 2 mm) were fabricated using VITA Mark II (VM; VITA Zahnfabrik), IPS e.max CAD (IE; IvoclarVivadent), and VITA Suprinity (VS; VITA Zahnfabrik) (n = 10 per subgroup). The amount of light transmission through the ceramic specimens was measured by a radiometer (Optilux, Kerr). Light-cured resin cement samples (Choice 2, Bisco) were fabricated in a Teflon mold and activated through the various ceramics with different shades and thicknesses using an LED unit (Bluephase, IvoclarVivadent). In the control group, the resin cement sample was directly light-cured without any ceramic. Vickers microhardness indentations were made on the resin surfaces (KoopaPazhoohesh) after 24 hours of dark storage in a 37°C incubator. Data were analyzed using analysis of variance followed by the Tukey post hoc test (α = 0.05).

Results

Ceramic thickness and shade had significant effects on light transmission and the microhardness of all specimens (p < 0.05). The mean values of light transmittance and microhardness of the resin cement in the VM group were significantly higher than those observed in the IE and VS groups. The lowest microhardness was observed in the VS group, due to the lowest level of light transmission (p < 0.05).

Conclusion

Greater thickness and darker shades of the 3 types of CAD/CAM ceramics significantly decreased the microhardness of the underlying resin cement.

  • 20 View
  • 0 Download
Close layer
Effects of radiant exposure and wavelength spectrum of light-curing units on chemical and physical properties of resin cements
Adriano Fonseca Lima, Stephanie Ellen Ferreira Formaggio, Lígia França Aires Zambelli, Alan Rodrigo Muniz Palialol, Giselle Maria Marchi, Cintia Helena Coury Saraceni, Marcelo Tavares de Oliveira
Restor Dent Endod 2016;41(4):271-277.   Published online September 26, 2016
DOI: https://doi.org/10.5395/rde.2016.41.4.271
AbstractAbstract PDFPubReaderePub
Objectives

In this study, we evaluated the influence of different radiant exposures provided by single-peak and polywave light-curing units (LCUs) on the degree of conversion (DC) and the mechanical properties of resin cements.

Materials and Methods

Six experimental groups were established for each cement (RelyX ARC, 3M ESPE; LuxaCore Dual, Ivoclar Vivadent; Variolink, DMG), according to the different radiant exposures (5, 10, and 20 J/cm2) and two LCUs (single-peak and polywave). The specimens were made (7 mm in length × 2 mm in width × 1 mm in height) using silicone molds. After 24 hours of preparation, DC measurement was performed using Fourier transform infrared spectrometry. The same specimens were used for the evaluation of mechanical properties (flexural strength, FS; elastic modulus, E) by a three-point bending test. Data were assessed for normality, after which two-way analysis of variance (ANOVA) and post hoc Tukey's test were performed.

Results

No properties of the Variolink cement were influenced by any of the considered experimental conditions. In the case of the RelyX ARC cement, DC was higher when polywave LCU was used; FS and E were not influenced by the conditions evaluated. The LuxaCore cement showed greater sensitivity to the different protocols.

Conclusions

On the basis of these results, both the spectrum of light emitted and the radiant exposure used could affect the properties of resin cements. However, the influence was material-dependent.

  • 19 View
  • 0 Download
Close layer
Review Article
Translucency changes of direct esthetic restorative materials after curing, aging and treatment
Yong-Keun Lee
Restor Dent Endod 2016;41(4):239-245.   Published online July 14, 2016
DOI: https://doi.org/10.5395/rde.2016.41.4.239
AbstractAbstract PDFPubReaderePub

The purpose of this article was to review the changes in translucency of direct esthetic restorative materials after curing, aging and treatment. As a criterion for the evaluation of clinical translucency changes, visual perceptibility threshold in translucency parameter difference (ΔTP) of 2 was used. Translucency changes after curing were perceivable depending on experimental methods and products (largest ΔTP in resin composites = 15.9). Translucency changes after aging were reported as either relatively stable or showed perceivable changes by aging protocols (largest ΔTP in resin composites = -3.8). Translucency changes after curing, aging and treatment were perceivable in several products and experimental methods. Therefore, shade matching of direct esthetic materials should be performed considering these instabilities of translucency in direct esthetic materials.

  • 20 View
  • 0 Download
Close layer
Research Article
Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units
Sayed-Mostafa Mousavinasab, Maryam Khoroushi, Mohammadreza Moharreri, Mohammad Atai
Restor Dent Endod 2014;39(3):155-163.   Published online May 13, 2014
DOI: https://doi.org/10.5395/rde.2014.39.3.155
AbstractAbstract PDFPubReaderePub
Objectives

Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs).

Materials and Methods

Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy.

Results

The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value (5.5℃), with no significant differences between the DCs of the test materials (p > 0.05).

Conclusions

Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  • 22 View
  • 0 Download
Close layer
Review Article
Thermal irritation of teeth during dental treatment procedures
Su-Jung Kwon, Yoon-Jung Park, Sang-Ho Jun, Jin-Soo Ahn, In-Bog Lee, Byeong-Hoon Cho, Ho-Hyun Son, Deog-Gyu Seo
Restor Dent Endod 2013;38(3):105-112.   Published online August 23, 2013
DOI: https://doi.org/10.5395/rde.2013.38.3.105
AbstractAbstract PDFPubReaderePub

While it is reasonably well known that certain dental procedures increase the temperature of the tooth's surface, of greater interest is their potential damaging effect on the pulp and tooth-supporting tissues. Previous studies have investigated the responses of the pulp, periodontal ligament, and alveolar bone to thermal irritation and the temperature at which thermal damage is initiated. There are also many in vitro studies that have measured the temperature increase of the pulp and tooth-supporting tissues during restorative and endodontic procedures. This review article provides an overview of studies measuring temperature increases in tooth structures during several restorative and endodontic procedures, and proposes clinical guidelines for reducing potential thermal hazards to the pulp and supporting tissues.

  • 23 View
  • 0 Download
Close layer
Basic Researchs
The effects of total-etch, wet-bonding, and light-curing of adhesive on the apical seal of a resin-based root canal filling system
Won-Il Ryu, Won-Jun Shon, Seung-Ho Baek, In-Han Lee, Byeong-Hoon Cho
J Korean Acad Conserv Dent 2011;36(5):385-396.   Published online September 30, 2011
DOI: https://doi.org/10.5395/JKACD.2011.36.5.385
AbstractAbstract PDFPubReaderePub
Objectives

This study evaluated the effects of adhesion variables such as the priming concepts of canal wall and the curing modes of adhesives on the sealing ability of a resin-based root canal filling system.

Materials and Methods

Apical microleakage of the Resilon-RealSeal systems filled with 3 different combinations of adhesion variables was compared with the conventional gutta-percha filling using a dye penetration method. Experimental groups were SEDC, Resilon (Resilon Research LLC) filling with self-etch RealSeal (SybronEndo) primer and dual-cure RealSeal sealer; NELC, Resilon filling with no etching, Scotchbond Multi-Purpose (3M ESPE) primer application and light-curing adhesive; and TELC, Resilon filling with Scotchbond Multi-Purpose primer and adhesive used under total etch / wet bonding and light-cure protocols. GPCS, gutta-percha filling with conventional AH26 plus sealer, was the control group.

Results

The median longitudinal dye penetration length of TELC was significantly shorter than those of GPCS and SEDC (Kruskal-Wallis test, p < 0.05). In the cross-sectional microleakage scores, TELC showed significant differences from other groups at 2 to 5 mm from the apical foramen (Kruskal-Wallis test, p < 0.05).

Conclusions

When a resin-based root canal filling material was used, compared to the self-etching primer and the dual-cure sealer, the total etch/wet-bonding with primer and light-curing of adhesive showed improved apical sealing and was highly recommended.

  • 17 View
  • 0 Download
Close layer
Effect of curing modes on micro-hardness of dual-cure resin cements
Ki-Deok Lee, Se-Hee Park, Jin-Woo Kim, Kyung-Mo Cho
J Korean Acad Conserv Dent 2011;36(2):132-138.   Published online March 31, 2011
DOI: https://doi.org/10.5395/JKACD.2011.36.2.132
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to evaluate curing degree of three dual-cure resin cements with the elapsed time in self-cure and dual-cure mode by means of the repeated measure of micro-hardness.

Materials and Methods

Two dual-cure self-adhesive resin cements studied were Maxcem Elite (Kerr), Rely-X Unicem (3M ESPE) and one conventional dual-cure resin cement was Rely-X ARC resin cement (3M ESPE). Twenty specimens for each cements were made in Teflon mould and divided equally by self-cure and dual-cure mode and left in dark, 36℃, 100% relative humidity conditional-micro-hardness was measured at 10 min, 30 min, 1 hr, 3 hr, 6 hr, 12 hr and 24 hr after baseline. The results of micro-hardness value were statistically analyzed using independent samples t-test and one-way ANOVA with multiple comparisons using Scheffe's test.

Results

The micro-hardness values were increased with time in every test groups. Dual-cure mode obtained higher micro-hardness value than self-cure mode except after one hour of Maxcem. Self-cured Rely-X Unicem showed lowest value and dual-cured Rely-X Unicem showed highest value in every measuring time.

Conclusions

Sufficient light curing to dual-cure resin cements should provided for achieve maximum curing.

  • 19 View
  • 0 Download
Close layer
Power density of light curing units through resin inlays fabricated with direct and indirect composites
Hoon-Sang Chang, Young-Jun Lim, Jeong-Mi Kim, Sung-Ok Hong
J Korean Acad Conserv Dent 2010;35(5):353-358.   Published online September 30, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.5.353
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to measure the power density of light curing units transmitted through resin inlays fabricated with direct composite (Filtek Z350, Filtek Supreme XT) and indirect composite (Sinfony).

Materials and Methods

A3 shade of Z350, A3B and A3E shades of Supreme XT, and A3, E3, and T1 shades of Sinfony were used to fabricate the resin inlays in 1.5 mm thickness. The power density of a halogen light curing unit (Optilux 360) and an LED light curing unit (Elipar S10) through the fabricated resin inlays was measured with a hand held dental radiometer (Cure Rite). To investigate the effect of each composite layer consisting the resin inlays on light transmission, resin specimens of each shade were fabricated in 0.5 mm thickness and power density was measured through the resin specimens.

Results

The power density through the resin inlays was lowest with the Z350 A3, followed by Supreme XT A3B and A3E. The power density was highest with Sinfony A3, E3, and T1 (p < 0.05). The power density through 0.5 mm thick resin specimens was lowest with dentin shades, Sinfony A3, Z350 A3, Supreme XT A3B, followed by enamel shades, Supreme XT A3E and Sinfony E3. The power density was highest with translucent shade, Sinfony T1 (p < 0.05).

Conclusions

Using indirect lab composites with dentin, enamel, and translucent shades rather than direct composites with one or two shades could be advantageous in transmitting curing lights through resin inlays.

  • 20 View
  • 0 Download
Close layer
Effect of the exponential curing of composite resin on the microtensile dentin bond strength of adhesives
So-Rae Seong, Duck-kyu Seo, In-Bog Lee, Ho-Hyun Son, Byeong-Hoon Cho
J Korean Acad Conserv Dent 2010;35(2):125-133.   Published online March 31, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.2.125
AbstractAbstract PDFPubReaderePub
Objectives

Rapid polymerization of overlying composite resin causes high polymerization shrinkage stress at the adhesive layer. In order to alleviate the shrinkage stress, increasing the light intensity over the first 5 seconds was suggested as an exponential curing mode by an LED light curing unit (Elipar FreeLight2, 3M ESPE). In this study, the effectiveness of the exponential curing mode on reducing stress was evaluated with measuring microtensile bond strength of three adhesives after the overlying composite resin was polymerized with either continuous or exponential curing mode.

Methods

Scotchbond Multipurpose Plus (MP, 3M ESPE), Single Bond 2 (SB, 3M ESPE), and Adper Prompt (AP, 3M ESPE) were applied onto the flat occlusal dentin of extracted human molar. The overlying hybrid composite (Denfil, Vericom, Korea) was cured under one of two exposing modes of the curing unit. At 48h from bonding, microtensile bond strength was measured at a crosshead speed of 1.0 mm/min. The fractured surfaces were observed under FE-SEM.

Results

There was no statistically significant difference in the microtensile bond strengths of each adhesive between curing methods (Two-way ANOVA, p > 0.05). The microtensile bond strengths of MP and SB were significantly higher than that of AP (p < 0.05). Mixed failures were observed in most of the fractured surfaces, and differences in the failure mode were not observed among groups.

Conclusion

The exponential curing method had no beneficial effect on the microtensile dentin bond strengths of three adhesives compared to continuous curing method.

  • 18 View
  • 0 Download
Close layer
Original Articles
Effect of curing methods of resin cements on bond strength and adhesive interface of post
Mun-Hong Kim, Hae-Jung Kim, Young-Gon Cho
J Korean Acad Conserv Dent 2009;34(2):103-112.   Published online March 31, 2009
DOI: https://doi.org/10.5395/JKACD.2009.34.2.103
AbstractAbstract PDFPubReaderePub

The purpose of this study was to compare the effect of curing methods of adhesive resins and resin cements in the root canal. Crown portions of 32 single-rooted mandibular premolars were removed. Routine endodontic treatment was done, and 9 mm deep post spaces were prepared within root canals. No. 3 FRC Postec posts (Ivoclar-Vivadent AG, Liechtenstein) were cemented in the post spaces by self-(SC) or light-curing (LC) using two dual-cured adhesives (Adper Scotchbond multi-purpose plus and Exite DSC )and resin cements (RelyX ARC and Variolink II). They were assigned to 4 groups (n=8); R-SC, R-LC, V-SC, V-LC group.

After stored in distilled water for 24 hours, each root was transversally sectioned with 1.5 mm thick and made three slices. The specimens were subjected to push-out test in a universal testing machine (EZ Test, Shimadzu Co., Japan) with a crosshead speed of 1 mm/min. The data were analyzed with repeated ANOVA and one-way.

ANOVA. Also the interface of post-resin cement and resin cement-canal wall of each group was observed under FE-SEM.

When fiber posts were cemented into the root canal using total-etch adhesives, the bond strength and adaptation between post and root canal dentin was affected by curing method. Self-cure of adhesives and resin cements showed higher bond strength and closer adaptation than light-cure of them.

  • 21 View
  • 0 Download
Close layer
The effect of different curing modes on composite resin/dentin bond strength in class icavities
Shin-young Baek, Young-Gon Cho, Byeong-Choon Song
J Korean Acad Conserv Dent 2008;33(5):428-434.   Published online September 30, 2008
DOI: https://doi.org/10.5395/JKACD.2008.33.5.428
AbstractAbstract PDFPubReaderePub

The purpose of this study was to compare the microtensile bond strength in Class I cavities associated with different light curing modes of same light energy density.

Occlusal enamel was removed to expose a flat dentin surface and twenty box-shaped Class I cavities were prepared in dentin. Single Bond (3M Dental product) was applied and Z 250 was inserted using bulk technique. The composite was light-cured using one of four techniques; pulse delay (PD group), soft-start (SS group), pulse cure (PC group) and standard continuous cure (CC group). The light-curing unit capable of adjusting time and intensity (VIP, Bisco Dental product) was selected and the light energy density for all curing modes was fixed at 16 J/cm2. After storage for 24 hours, specimens were sectioned into beams with a rectangular cross-sectional area of approximately 1 mm2. Microtensile bond strength (µTBS) test was performed using a universal testing machine (EZ Test, Shimadzu Co.). The results were analyzed using oneway ANOVA and Tukey's test at significance level 0.05. The µTBS of PD group and SS group was higher than that of PC group and CC group.

Within the limitations of this in vitro study, modification of curing modes such as pulse delay and soft start polymerization can improve resin/dentin bond strength in Class I cavities by controlling polymerization velocity of composite resin.

  • 20 View
  • 0 Download
Close layer
Polymerization of dual cured composites by different thickness
Yun Ju Kim, Myoung Uk Jin, Sung Kyo Kim, Tae-Yub Kwon, Young Kyung Kim
J Korean Acad Conserv Dent 2008;33(3):169-176.   Published online May 31, 2008
DOI: https://doi.org/10.5395/JKACD.2008.33.3.169
AbstractAbstract PDFPubReaderePub

The purpose of this study was to evaluate the effect of thickness, filling methods and curing methods on the polymerization of dual cured core materials by means of microhardness test.

Two dual cured core materials, MultiCore Flow (Ivoclar Vivadent AG, Schaan, Liechtenstein) and Bis-Core (Bisco Inc., Schaumburg, IL, USA) were used in this study. 2 mm (bulky filled), 4 mm (bulky filled), 6 mm (bulky and incrementally filled) and 8 mm (bulky and incrementally filled)-thickness specimens were prepared with light cure or self cure mode. After storage at 37℃ for 24 hours, the Knoop hardness values (KHN) of top and bottom surfaces were measured and the microhardness ratio of top and bottom surfaces was calculated. The data were analyzed using one-way ANOVA and Scheffe multiple comparison test, with α = 0.05.

The effect of thickness on the polymerization of dual cured composites showed material specific results. In 2, 4 and 6 mm groups, the KHN of two materials were not affected by thickness. However, in 8 mm group of MultiCore Flow, the KHN of the bottom surface was lower than those of other groups (p < 0.05). The effect of filling methods on the polymerization of dual cured composites was different by their thickness or materials. In 6 mm thickness, there was no significant difference between bulk and incremental filling groups. In 8 mm thickness, Bis-Core showed no significant difference between groups. However, in MultiCore Flow, the microhardness ratio of bulk filling group was lower than that of incremental filling group (p < 0.05). The effect of curing methods on the polymerization of dual cured composites showed material specific results. In Bis-Core, the KHN of dual cured group were higher than those of self cured group at both surfaces (p < 0.05). However, in MultiCore Flow, the results were not similar at both surfaces. At the top surface, dual cured group showed higher KHN than that of self cured group (p < 0.05). However, in the bottom surface, dual cured group showed lower value than that of self cured group (p < 0.05).

  • 19 View
  • 0 Download
Close layer
The effect of intermittent composite curing on marginal adaptation
Yong-Hwan Yun, Sung-Ho Park
J Korean Acad Conserv Dent 2007;32(3):248-259.   Published online May 31, 2007
DOI: https://doi.org/10.5395/JKACD.2007.32.3.248
AbstractAbstract PDFPubReaderePub

The aim of this research was to study the effect of intermittent polymerization on marginal adaptation by comparing the marginal adaptation of intermittently polymerized composite to that of continuously polymerized composite.

The materials used for this study were Pyramid (Bisco Inc., Schaumburg, U.S.A.) and Heliomolar (Ivoclar Vivadent, Liechtenstein). The experiment was carried out in class II MOD cavities prepared in 48 extracted human maxillary premolars. The samples were divided into 4 groups by light curing method; group 1- continuous curing (60s light on with no light off); group 2- intermittent curing (cycles of 3s with 2s light on & 1s light off for 90s); group 3- intermittent curing (cycles of 2s with 1s light on & 1s light off for 120s); group 4- intermittent curing (cycles of 3s with 1s light on & 2s light off for 180s). Consequently the total amount of light energy radiated was same in all the groups. Each specimen went through thermo-mechanical loading (TML) which consisted of mechanical loading (720,000 cycles, 5.0 kg) with a speed of 120 rpm for 100 hours and thermocycling (6000 thermocycles of alternating water of 50℃ and 55℃). The continuous margin (CM) (%) of the total margin and regional margins, occlusal enamel (OE), vertical enamel (VE), and cervical enamel (CE)) was measured before and after TML under a × 200 digital light microscope.

Three-way ANOVA and Duncan's Multiple Range Test was performed at 95% level of confidence to test the effect of 3 variables on CM (%) of the total margin: light curing conditions, composite materials and effect of TML. In each group, One-way ANOVA and Duncan's Multiple Range Test was additionally performed to compare CM (%) of regions (OE, VE, CE).

The results indicated that all the three variables were statistically significant (p < 0.05). Before TML, in groups using Pyramid, groups 3 and 4 showed higher CM (%) than groups 1 and 2, and in groups using Heliomolar, groups 3 and 4 showed higher CM (%) than group 1 (p < 0.05). After TML, in both Pyramid and Heliomolar groups, group 3 showed higher CM (%) than group 1 (p < 0.05). CM (%) of the regions are significantly different in each group (p < 0.05). Before TML, no statistical difference was found between groups within the VE and CE region. In the OE region, group 4 of Pyramid showed higher CM (%) than group 2, and groups 2 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05). After TML, no statistical difference was found among groups within the VE and CE region. In the OE region, group 3 of Pyramid showed higher CM (%) than groups 1 and 2, and groups 2,3 and 4 of Heliomolar showed higher CM (%) than group 1 (p < 0.05).

It was concluded that intermittent polymerization may be effective in reducing marginal gap formation.

  • 21 View
  • 1 Download
Close layer
Polymerization shrinkage of composite resins cured by variable light intensities
Mi-Young Lim, Kyung-Mo Cho, Chan-Ui Hong
J Korean Acad Conserv Dent 2007;32(1):28-36.   Published online January 31, 2007
DOI: https://doi.org/10.5395/JKACD.2007.32.1.028
AbstractAbstract PDFPubReaderePub

The purpose of this study was to compare the effect of exponential curing method with conventional curing and soft start curing method on polymerization shrinkage of composite resins.

Three brands of composite resins (Synergy Duo Shade, Z250, Filtek Supreme) and three brands of light curing units (Spectrum 800, Elipar Highlight, Elipar Trilight) were used. 40 seconds curing time was given. The shrinkage was measured using linometer for 90 seconds.

The effect of time on polymerization shrinkage was analysed by one-way ANOVA and the effect of curing modes and materials on polymerization shrinkage at the time of 90s were analysed by two-way ANOVA. The shrinkage ratios at the time of 20s to 90s were taken and analysed the same way. The results were as follows:

1. All the groups except Supreme shrank almost within 20s. Supreme cured by soft start and exponential curing had no further shrinkage after 30s (p < 0.05).

2. Statistical analysis revealed that polymerization shrinkage varied among materials (p = 0.000) and curing modes (p = 0.003). There was no significant interaction between material and curing mode.

3. The groups cured by exponential curing showed the statistically lower polymerization shrinkage at 90s than the groups cured by conventional curing and soft start curing (p < 0.05).

4. The initial shrinkage ratios of soft start and exponential curing were statistically lower than conventional curing (p < 0.05).

From this study, the use of low initial light intensities may reduce the polymerization rate and, as a result, reduce the stress of polymerization shrinkage.

  • 21 View
  • 0 Download
Close layer
The polymerization rate and the degree of conversion of composite resins by different light sources
Joo-Hee Ryoo, In-Bog Lee, Hyun-Mee Yoo, Mi-Ja Kim, Chang-In Seok, Hyuk-Choon Kwon
J Korean Acad Conserv Dent 2004;29(4):386-398.   Published online July 31, 2004
DOI: https://doi.org/10.5395/JKACD.2004.29.4.386
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to observe the reaction kinetics and the degree of polymerization of composite resins when cured by different light sources and to evaluate the effectiveness of the blue Light Emitting Diode Light Curing Units (LED LCUs) compared with conventional halogen LCUs.

Materials and Methods

First, thermal analysis was performed by a differential scanning calorimeter (DSC). The LED LCU (Elipar Freelight, 320 mW/cm2) and the conventional halogen LCU (XL3000, 400 mW/cm2) were used in this study for curing three composite resins (SureFil, Z-250 and AEliteFLO). Second, the degree of conversion was obtained in the composite resins cured according to the above curing mode with a FTIR. Third, the measurements of depth of cure were carried out in accordance with ISO 4049 standards. Statistical analysis was performed by two-way ANOVA test at 95% levels of confidence and Duncan's procedure for multiple comparisons.

Results

The heat of cure was not statistically different among the LCUs (p > 0.05). The composites cured by the LED (Exp) LCUs were statistically more slowly polymerized than by the halogen LCU and the LED (Std) LCU (p < 0.05). The composite resin groups cured by the LED (Exp) LCUs had significantly greater degree of conversion value than by the halogen LCU and the LED (Std) LCU (p = 0.0002). The composite resin groups cured by the LED (Std) LCUs showed significantly greater depth of cure value than by the halogen LCU and the LED (Exp) LCU (p < 0.05).

  • 20 View
  • 0 Download
Close layer
Influence of the curing time for the adhesive on the oxygen-inhibited layer thickness and the shear bond strength to dentin
Yong-Hoon Choi, Ji-Hyun Bae, Ho-Hyun Son, In-Bog Lee, Chung-Moon Um, Seung-Ho Baek, Oh-Young Kim, Chang-Keun Kim, Byeong-Hoon Cho
J Korean Acad Conserv Dent 2004;29(2):177-184.   Published online January 14, 2004
DOI: https://doi.org/10.5395/JKACD.2004.29.2.177
AbstractAbstract PDFPubReaderePub
ABSTRACT Objectives:

This study investigated the hypothesis that increasing light-curing time would leave the oxygen-inhibited layer (OIL) of the adhesive thinner, and in turn, result in lower shear bond strength (SBS) than those obtained by the routine curing procedures.

Methods:

120 human extracted posterior teeth were randomly divided into three groups for bonding with three adhesives: All Bond 2®, One Step®, and Adper Prompt®. They were subsequently divided into four subgourps with different light-curing time (10, 20, 30 and 60 s). The assigned adhesives were applied on superficial occlusal dentin according to the manufacturer’s instructions and cured with one of the four curing times. Composite resin cylinder, 2.35 mm in diameter, were built on the cured adhesive and light-cured for 40 s. SBS were measured after 24 h from the bonding using a universal testing machine (crosshead speed 1.0 mm/min). The relative thickness of the OIL and the degree of conversion (DC) were determined from the adhesive on a slide glass using FT-NIR in an absorbance mode. Data were analysed with One-way ANOVA and Duncan’s multiple test (p < 0.05).

Results:

With increasing cure time, although there were no significant difference in th SBS of One-step and Adper Prompt (p > 0.05), those of All Bond 2 decreased significantly (p < 0.05). The relative thicknesses of the OIL on each adhesive were not affected by the cure time (p > 0.05). Although the DC of All-Bond 2 were statistically not different with increasing cure time (p > 0.05), those of One-Step and Adper Prompt showed an increasing trends with increasing cure time (p < 0.05).

Conclusions:

Increasing light-curing time did not affect on the relative thickness of the OIL of the adhesives, and in turn, on the SBS to dentin.

  • 21 View
  • 0 Download
Close layer
Polymerization ability of several light curing sources on composite resin
Hye-Jin Shin, Jin-Woo Kim, Kyung-Mo Cho
J Korean Acad Conserv Dent 2003;28(2):156-161.   Published online March 31, 2003
DOI: https://doi.org/10.5395/JKACD.2003.28.2.156
AbstractAbstract PDFPubReaderePub

The purpose of this study is to evaluate the polymerization ability of three different light sources by microhardness test. Stainless steel molds of 1, 2, 3, 4 and 5 mm in thickness of 7 mm in diameter were prepared. The hybrid composite Z100 was packed into the hole of the mold and curing light was activated for designated time. Three different light sources, conventional halogen, light emitting diode, and plasma arc, were used for curing of composite. Two different curing times applied; one is to follow the manufacturer's recommendation and the other is to extend the curing time of LED and plasma arc for balancing the light energy with halogen. Immediately after curing, the Vickers hardness was measured at the bottom of specimen.

The results were as follows.

The composite cured with LED showed equal to higher microhardnesss than halogen.

The composite was cured with plasma arc by manufacturer's recommendation showed lowest microhardness at all thickness. However, when curing time was extended, microhardness was higher than the others.

In conclusion, this study suggested that plasma arc needs properly extended curing time.

  • 26 View
  • 0 Download
Close layer
Mechanical properties and microleakage of composite resin materials cured by variable light intensities
Seung-Ryul Han, Kyung-San Min, Dong-Hoon Shin
J Korean Acad Conserv Dent 2003;28(2):134-145.   Published online March 31, 2003
DOI: https://doi.org/10.5395/JKACD.2003.28.2.134
AbstractAbstract PDFPubReaderePub

Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique.

Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, 200 mW/cm2 were initially used for 10, 20, 30 seconds each and the maximum intensity of 600 mW/cm2 was used for the rest of curing time in a soft-start curing technique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of 600 mW/cm2.

After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was 4×3×1.5 mm and cured under those conditions.

Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups.

The results were as follows:

Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of 50 mW/cm2,

Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength.

Soft-start group that started curing with an initial light intensity of 100 mW/cm2 for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of 200 mW/cm2 for 10 seconds showed the smallest marginal gap, if there was no difference among groups.

Soft-start technique resulted in better dye-proof margin than conventional technique (p=0.014) and ramping technique(p=0.002).

There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation.

From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage.

It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

  • 25 View
  • 0 Download
Close layer
Color changes in composites according to various light curing sources
Young-Gon Cho, Myung-Cho Kim
J Korean Acad Conserv Dent 2002;27(1):87-94.   Published online January 31, 2002
DOI: https://doi.org/10.5395/JKACD.2002.27.1.087
AbstractAbstract PDFPubReaderePub

The purpose of this study was to evaluate the color changes of composite resin polymerized with three type of light curing units. Composite resin (Z100, shade A2) were applied in a cylindrical metal mold(2 mm thick, 7 mm diameter).

Twenty specimens according to light curing units were made.

Group1: the specimens were polymerized with Apollo 95E for 3seconds(1370 mW/cm2).

Group2: the specimens were polymerized with XL 3000 for 40seconds(480 mW/cm2).

Group3: the specimens were polymerized with Spectrum 800 for 10 seconds(250 mW/cm2) and 30 seconds(700 mW/cm2).

The microhardness values(VHN) of upper and lower surfaces specimens after light polymerization were measured for the degree of polymerization. All specimens were stored in distilled water at 60℃ for 30 days.

The color characteristics(L*, a*, b*) of the specimens before and after immersion were measured by spectrophotometer and the total color difference (ΔE*) was computed.

The results obtained were as follows:

1. The microhardness values of Group I showed significantly lower than those of Group II and III(p<0.05).

2. In all groups the ΔE* values presented below 2.0.

3. Group I showed the highest ΔE* values followed order from highest to lowest by Group II and III (p<0.05).

  • 23 View
  • 0 Download
Close layer
EFFECT OF LIGHT SOURCE AND SHADE ON DEPTH OF CURE OF COMPOSITES
Joon-Sok Na, Sun-Wa Jeong, Yun-Chan Hwang, Sun-Ho Kim, Chang Yun, Won-Mann Oh, In-Nam Hwang
J Korean Acad Conserv Dent 2002;27(6):561-568.   Published online January 14, 2002
DOI: https://doi.org/10.5395/JKACD.2002.27.6.561
AbstractAbstract PDFPubReaderePub
ABSTRACT

Purpose of this research is estimating polymerization depth of different source of light. XL 3000 for halogen light, Apollo 95E for plasma arc light and Easy cure for LED light source were used in this study. Different shade (B1 & A3) resin composites (Esthet-X, Dentsply, U.S.A.) were used to measure depth of cure. 1, 2, and 3 mm thick samples were light cured for three seconds, six seconds or 10 seconds with Apollo 95E and they were light cured with XL-3000 and Easy cure for 10 seconds, 20 seconds, or 40 seconds. Vicker's hardness test carried out after store samples for 24 hours in distilled water.

Results were as following.

Curing time increases from all source of lights, curing depth increased(p<0.05).

Depth (that except 1mm group and 2mm group which lighten to halogen source of light) deepens in all groups, Vickers hardness decreased(p<0.05).

Vicker's hardness of A3 shade composite was lower in all depths more than B1 shade composites in group that do polymerization for 10 seconds and 20 seconds using halogen source of light(p<0.05), but group that do polymerization for 40 seconds did not show difference(p>0.05).

Groups that do polymerization using Plasma arc and LED source of light did not show Vicker's hardness difference according to color at surface and 1mm depth(p>0.05), but showed difference according to color at 2mm and 3mm depth(p<0.05). The results showed that Apollo 95E need more polymerization times than manufacturer's recommendation (3 seconds), and Easy cure need polymerization time of XL-3000 at least.

  • 22 View
  • 0 Download
Close layer
MICROHARDNESS AND MICROLEAKAGE OF COMPOSITE RESIN CURED BY VISIBLE LIGHT WITH VARIOUS BAND OF WAVELENGTH
Soo-Man Park, Jae-Yong Lee, Seung-Ryul Han, Sang-Yoon Ha, Dong-Hoon Shin
J Korean Acad Conserv Dent 2002;27(4):403-410.   Published online January 14, 2002
DOI: https://doi.org/10.5395/JKACD.2002.27.4.403
AbstractAbstract PDFPubReaderePub
ABSTRACT

Several ways of curing are being tried to improve material’s properties and reduce marginal gap. However, all are considering about the pattern of light intensity. It was noted from the preliminary study the change of light wavelength from filter changing may give an impact on material’s property and microleakage.

The object of this study was to verify the effect of filters with various wavelength width on the microhardness and microleakage of composite resin; hybrid type of DenFil and submicron hybrid type of Esthet X. Composite resins were cured using 3 kinds of filter; narrow-banded(465-475 nm), mid-banded(430-470 nm), wide-banded(400-500 nm). After the estimation of microhardness, degree of dye penetration and the maximum gap from SEM evaluation were done between 4 groups that showed no difference in microhardness value of the lower surface.

The results were as follows:

Adequate microhardness could not be gained with a narrow-banded filter irrespective of curing time. At the upper surface, DenFil should be polymerized with middle or wide-banded filter for 20 seconds at least, while Esthet X be cured with middle or wide-banded filter for 30 seconds at least to get similar hardness value to control group.

There was little dye penetration in enamel margin, but all dentin margins showed much more dye penetration irrespective of curing conditions. Although there was no statistical difference, groups cured with mid-banded filter for 40 seconds and with wide-width filter for 20 seconds showed relatively less dye penetration.

It was revealed from the SEM examination that group cured with wide-banded filter had the smallest gap without statistical significance. Spearman’s rho test showed that the correlation between the results of dye penetration and SEM examination was very low.

From these results, it could be concluded that curing with wide-width filter would be better than the other techniques, even though the curing technique using mid-width filter seems to have its own unique advantage.

  • 20 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP