Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-12.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Color changes in composites according to various light curing sources
Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Articles

Page Path
HOME > Restor Dent Endod > Volume 27(1); 2002 > Article
Original Article Color changes in composites according to various light curing sources
Young-Gon Cho, Myung-Cho Kim
Journal of Korean Academy of Conservative Dentistry 2002;27(1):87-94.
DOI: https://doi.org/10.5395/JKACD.2002.27.1.087
Published online: January 31, 2002

Department of Conservative Dentistry, College of dentistry, Chosun University, Korea.

Copyright © 2002 Korean Academy of Conservative Dentistry

  • 22 Views
  • 0 Download
prev next
  • The purpose of this study was to evaluate the color changes of composite resin polymerized with three type of light curing units. Composite resin (Z100, shade A2) were applied in a cylindrical metal mold(2 mm thick, 7 mm diameter).
    Twenty specimens according to light curing units were made.
    Group1: the specimens were polymerized with Apollo 95E for 3seconds(1370 mW/cm2).
    Group2: the specimens were polymerized with XL 3000 for 40seconds(480 mW/cm2).
    Group3: the specimens were polymerized with Spectrum 800 for 10 seconds(250 mW/cm2) and 30 seconds(700 mW/cm2).
    The microhardness values(VHN) of upper and lower surfaces specimens after light polymerization were measured for the degree of polymerization. All specimens were stored in distilled water at 60℃ for 30 days.
    The color characteristics(L*, a*, b*) of the specimens before and after immersion were measured by spectrophotometer and the total color difference (ΔE*) was computed.
    The results obtained were as follows:
    1. The microhardness values of Group I showed significantly lower than those of Group II and III(p<0.05).
    2. In all groups the ΔE* values presented below 2.0.
    3. Group I showed the highest ΔE* values followed order from highest to lowest by Group II and III (p<0.05).
  • 1. Ruyter IE. Conversion in different depths of ultraviolet and visible light activated composite materials. Acta Odontol Scand. 1982;40: 179-182.ArticlePubMed
  • 2. Shintani H, Inoue T, Yamaki M. Analysis of camphoroquinone invisible light cured composite resins. Dent Mater. 1985;1: 124-126.PubMed
  • 3. Leung R, Fan P, Johnson W. Post-irradiation polymerization of visible light activated composite resin. J Dent Res. 1983;62: 363-365.ArticlePDF
  • 4. Friedman J. Care and maintenance of dental curing light. Dent Today. 1991;10: 40-41.
  • 5. Carvalho RM, Pereira JC, Yoshiyama M, Pashley DH. A review of polymerization contraction: the incidence of stress development versus stress relief. Oper Dent. 1996;21(1):17-24.PubMed
  • 6. Uno S, Asmussen E. Marginal adaptation of restorative resin polymerized at a reduced rate. Scand J Dent Res. 1991;99: 440-444.PubMed
  • 7. Unterbrink GL, Muessner R. Influence of light intensity on two restorative systems. J Dent. 1995;23(3):183-189.ArticlePubMed
  • 8. Mehl A, Hickel R, Kunzelmann KH. Physical properties and gap formation of light-cured composites with and without soft start-polymerization. J Dent. 1997;25(3):321-330.ArticlePubMed
  • 9. Koran P, Kurschner R. Effect of sequential versus continuous irradiation of a light-cured resin composite on shrinkage, viscosity, adhesion and degree of polymerization. Am J Dent. 1998;11(1):17-22.PubMed
  • 10. Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater. 2000;16(5):330-336.ArticlePubMed
  • 11. Hanyang University Department of Physics. Plasma Application. 2000;Laboratory.
  • 12. Eldiwany M, Komatsu S, Powers JM. Curing light intensityaffects mechanicalproperties of composites. J Dent Res. 1997;76: 73.
  • 13. Caughman WF, Caughman GB, Shiflett RA, et al. Correlation of cytotoxicity, filler loading and curing time of dental composites. Biomaterials. 1991;12: 737-740.ArticlePubMed
  • 14. Seghi RR, Gritz MD, Kim J. Colorimetric changes in composites resulting fromvisible-light-initiated polymerization. Dent Mater. 1990;6: 133-137.ArticlePubMed
  • 15. Brauer GM. Color changes of composites on exposure to various energy sources. Dent Mater. 1988;4: 55-59.ArticlePubMed
  • 16. Powers JM, Barakat MM, Ogura H. Color and optical properties of posteriorcomposites resin restoration. Dent Mater J. 1985;4: 62-67.PubMed
  • 17. Noie F, O'Keeefe KL, Powers JM. Color stability of resin cements after accelerated aging. Int J Prosthodont. 1995;8: 51-55.PubMed
  • 18. Swift EJ, Hammel SA, Lund PS. Colorimetric evaluation of vita shade resin composites. Int J Prosthodont. 1994;7: 356-361.PubMed
  • 19. Asmussen E. An accelerated test for color stability of restorative resins. Acta Odontol Scand. 1981;39: 329-332.Article
  • 20. Roh BD, Park SH, Lee CS. An experimental study of the degree of conversion and cytotoxicity of dual cure resin cements. J Korean Acad Conserv Dent. 1995;20(1):33-33.
  • 21. DeWald JP, Ferracane JL. A comparison of four modes of evaluation depth of cure of light-activated composites. J Dent Res. 1982;66: 727-730.ArticlePubMedPDF
  • 22. Vargas MA, Cobb DS, Schmit JL. Polymerization of composite resins:Argon laser vs conventional light. Oper Dent. 1998;23: 87-93.PubMed
  • 23. Sakaguchi RL, Sasik CT, Bunczak MA, Douglas WH. Strain gauge method for mearsuring polymerization contraction of composite restoratives. J Dent. 1991;19(5):312-326.PubMed
  • 24. Goracci G, et al. Curing light intensity and marginal leakage of resin composite restorations. Quintessence Int. 1996;27(5):355-362.
  • 25. Martin FE. A survey of the efficiency of visible light curing units. J Dent. 1998;26(3):239-243.ArticlePubMed
  • 26. Rueggeberg FA, Craig RC. Correlation of parameters used to estimate monomer conversion in a lightcured composite. J Dent Res. 1988;67: 932-937.ArticlePubMedPDF
  • 27. Asmussen E. Restorative resins:hardness and strengthvsquality of remaining double bonds. Scand J Dent Res. 1982;90: 484-489.PubMed
  • 28. Hansen EK. After-polymerization of visible light activated resins ; surface hardness vs light source. Scand J Dent Res. 1983;91: 406-410.ArticlePubMed
  • 29. Backer J, Dermaut L, Bruynooghe W. The depth of polymerization of visible light-cured composite resins. Quintessence Int. 1985;10: 693-699.
  • 30. Leung RL, Kahn RL, Fan PL. Comparison of depth of polymerization evaluation method for photoactivated composite. J Dent Res. 1982;61: 300. IADR Abstract # 1095.
  • 31. Munksgaard EC, Peutzfeldt A, Asmussen E. Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light. Eur J Oral Sci. 2000;108(4):341-345.ArticlePubMedPDF
  • 32. Silikas N, Eliades G, Watts DC. Light intensity effects on resin-composite degree of conversion and shrinkage strain. Dent Mater. 2000;16(4):292-296.ArticlePubMed
  • 33. Asmussen E. Factor affecting the color stability of restorative resins. Acta Odontol Scand. 1983;41: 11-18.PubMed
  • 34. Um CM, Ruyter IE. Staining of resin-based veneering materials with coffee and tea. Quintessence Int. 1991;22: 377-386.PubMed
  • 35. Ruyter IE, Svendsen SA. Remaining methacrylate groups in composite restorative materials. Acta Odontol Scand. 1978;36: 75-82.ArticlePubMed
  • 36. Hayshi H, Maejima K, Kezuka K, Ogushi K, Kono A, Fusayama TT. In vitro study of discoloration of composite resins. J Prosthet Dent. 1974;32: 66-69.ArticlePubMed
  • 37. Dodge WW, Dale RA, Colley RL, Duke ES. Comparison of wet and dry finishing of resin composites with aluminium oxide discs. Dent Mater. 1991;7(1):18-20.PubMed
  • 38. Han WS, Kum KY, Lee CY. The influence of fluoride on remineralization of artificial dental caries. J Korean Dent Assoc. 1977;15: 1009-1012.
  • 39. Gross MD, Moser JB. A colorimetric study ofcoffeeandtea staining of four composite resins. J Oral Rehabil. 1977;4: 311-322.ArticlePubMed
  • 40. Satou N, Khan AM, Mastsumae I, Satou J, Shintani H. In vitro color change of composite-based resins. Dent Mater. 1989;5: 384-389.ArticlePubMed
  • 41. Wozniak WT, Muller TP, Silverman R, Moser JB. Photographic assessment of colour changes in cold and heat-cure resins. J Oral Rehabil. 1981;8: 333-339.ArticlePubMed
  • 42. Raptis CN, Powers JM, Fan PL, Yu R. Staining of composite resins by cigarette smoke. J Oral Rehabil. 1982;9: 367-371.ArticlePubMed
  • 43. Ruyter IE, Nilner K, Moller B. Color stability of dental composite resin materials for crown and bridge veneers. Dent Mater. 1987;13: 246-251.ArticlePubMed
  • 44. Seghi RR, Jonston WM, O'Brien WJ. Performance assessment of colorimetric devices on dental porcelain. J Dent Res. 1989;68: 1755-1759.ArticlePubMedPDF
  • 45. Dijken JWV. A clinical evaluation of anterior conventional microfilled and hybrid composite resin filling. Acta Odontol Scand. 1986;44: 357.PubMed
  • 46. Kim CW, Lim BS, Moon HJ. Effect of Organic Solutions on the Surface Roughness and Color Stability of Dental Composite Resins. J Korea Res Soc Dent Mater. 1999;26(1):17-34.
  • 47. Dietchi D, Campanile G, Holz J, Meyer JM. Comparison of the color stability of ten new-generation composites : An in vitro study. Dent Mater. 1994;10: 353-362.ArticlePubMed
Fig. 1
Separable cylindrical metal mold for sample fabrication
jkacd-27-87-g001.jpg
Fig. 2
Diagram of the CIE L*, a*, b* color space
jkacd-27-87-g002.jpg
Fig. 3
Graphic representating of mean microhardness values(VHN) of each group
I: Apollo 95E, II: XL 3000, III: Spectrum 800
jkacd-27-87-g003.jpg
Fig. 4
Graphic representation of the chromatic color changes of group I, II and III produced by storing for 30 days in distilled water at 60℃
jkacd-27-87-g004.jpg
Fig. 5
Total color difference(ΔE*) in group I, II and III
I: Apollo 95E, II: XL 3000, III: Spectrum 800
jkacd-27-87-g005.jpg
Table 1
Light curing units used in this study
jkacd-27-87-i001.jpg
Table 2
Microhardness values(VHN) of upper surfaces and lower surfaces of each group(Mean±SD)

I: Apollo 95E , II: XL 3000, III: Spectrum 800

*: Statistically significant difference between groups (p < 0.05)

jkacd-27-87-i002.jpg
Table 3
Result of color changes of group I, II and III after storing for 30 days in distilled water at 60℃ expressed as means

ΔL*, Δa*, Δb*, ΔC*: color difference, ΔE*: total color difference.

I: Apollo 95E, II: XL 3000, III: Spectrum 800

Standard deviations are in parentheses. *: significant differences (p<0.05)

jkacd-27-87-i003.jpg

Tables & Figures

REFERENCES

    Citations

    Citations to this article as recorded by  

      • ePub LinkePub Link
      • Cite
        CITE
        export Copy Download
        Close
        Download Citation
        Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

        Format:
        • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
        • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
        Include:
        • Citation for the content below
        Color changes in composites according to various light curing sources
        J Korean Acad Conserv Dent. 2002;27(1):87-94.   Published online January 31, 2002
        Close
      • XML DownloadXML Download
      Figure
      • 0
      • 1
      • 2
      • 3
      • 4
      Color changes in composites according to various light curing sources
      Image Image Image Image Image
      Fig. 1 Separable cylindrical metal mold for sample fabrication
      Fig. 2 Diagram of the CIE L*, a*, b* color space
      Fig. 3 Graphic representating of mean microhardness values(VHN) of each group I: Apollo 95E, II: XL 3000, III: Spectrum 800
      Fig. 4 Graphic representation of the chromatic color changes of group I, II and III produced by storing for 30 days in distilled water at 60℃
      Fig. 5 Total color difference(ΔE*) in group I, II and III I: Apollo 95E, II: XL 3000, III: Spectrum 800
      Color changes in composites according to various light curing sources

      Light curing units used in this study

      Microhardness values(VHN) of upper surfaces and lower surfaces of each group(Mean±SD)

      I: Apollo 95E , II: XL 3000, III: Spectrum 800

      *: Statistically significant difference between groups (p < 0.05)

      Result of color changes of group I, II and III after storing for 30 days in distilled water at 60℃ expressed as means

      ΔL*, Δa*, Δb*, ΔC*: color difference, ΔE*: total color difference.

      I: Apollo 95E, II: XL 3000, III: Spectrum 800

      Standard deviations are in parentheses. *: significant differences (p<0.05)

      Table 1 Light curing units used in this study

      Table 2 Microhardness values(VHN) of upper surfaces and lower surfaces of each group(Mean±SD)

      I: Apollo 95E , II: XL 3000, III: Spectrum 800

      *: Statistically significant difference between groups (p < 0.05)

      Table 3 Result of color changes of group I, II and III after storing for 30 days in distilled water at 60℃ expressed as means

      ΔL*, Δa*, Δb*, ΔC*: color difference, ΔE*: total color difference.

      I: Apollo 95E, II: XL 3000, III: Spectrum 800

      Standard deviations are in parentheses. *: significant differences (p<0.05)


      Restor Dent Endod : Restorative Dentistry & Endodontics
      Close layer
      TOP