The purpose of this study was to evaluate the effect of increasing application time of single bottle adhesives (SBA) to microtensile bond strength (MTBS) of dried dentin. To expose the superficial dentin surfaces, human molars were sectioned perpendicular to the long axis of tooth. 32% phosphoric acid gels were applied for 15s and rinsed. The teeth were randomly assigned to 3 groups ; S group (Single Bond), O group (One-Step), P group (Prime & Bond NT). Each group was divided to 3 subgroups (W: dentin wipe with wet gauge and light cured immediately, D: dentin dried for 30s and light cured immediately, 30: dentin dried for 30s and light cured after applying SBA for 30s). Composite resin was built up on the dentin surface and sectioned to obtain 20 specimens with 1 mm2 cross sectional area and the MTBS was measured.
For Single Bond, the mean MTBS of S-W and S-30 group were higher than that of S-D group statistically (P < 0.05). For One-Step, the mean MTBS of O-D group was statistically lower than that of O-W group (P < 0.05). For Prime & Bond NT, the mean MTBS of P-30 group was statistically lower than that of P-D group (P < 0.05).
The purpose of the present study was to evaluate the relationship between the amount of cuspal deflection and linear polymerization shrinkage in resin composite and polyacid modified resin composite. For cuspal defelction and shrinkage measurement, Dyract AP, Compoglass F, Z100, Surefil, Pyramid, Synergy Compact, Heliomolar and Heliomolar HB were used.
For measuring polymerization shrinkage, a custom made linometer (R&B, Daejon, Korea) was used. The amount of shrinkage among materials was compared using One-way ANOVA analysis and Tukey's test at the 95% of confidence level.
For measuring cuspal deflection of teeth, standardized MOD cavities were prepared in extracted maxillary premolars. After a self-etching adhesive was applied, cavities were bulk filled with one of the filling materials.Fifteen teeth were used for each material. Cuspal deflection was measured by a custom made cuspal-deflection measuring device. One-way ANOVA analysis and Tukey's test were used to determine differences between the materials at the 95% of confidence level.
Correlation of polymerization shrinkage and cuspal deflection were analyzed by regression analysis.
The amount of polymerization shrinkage from least to greatest was Heliomolar, Surefil < Heliomolar HB < Z100, Synergy Compact < Dyract AP < Pyramid, Compoglass F (p < 0.05).
The amount of cuspal deflection from least to greatest was Z100, Heliomolar, Heliomolar HB, Synergy Compact Surefil < Compoglass F < Pyramid, Dyract AP (p < 0.05).
The amount of polymerization shrinkage and cuspal deflection showed a correlation (p < 0.001).
The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape; adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality; Scotchbond™ Multi-purpose and Xeno®III) and iris hole diameters (volume; 1 mm or 3 mm in diameter × 1.5 mm in thickness). Ninety-six molars were randomly divided into 8 groups (2 × 2 × 2 experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done. When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly. The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.
The aim of this study was to compare the root canal systems of maxillary and mandibular premolars that had a single root using radiographs and clearing samples. 142 single rooted premolars were selected and mesio-distal and bucco-lingual views were radiographed using intra-oral dental standard films. Four equally trained examiners classify the root canal types from the developed radiographs. After opening the tooth for access, it was stored in 5% NaOCl to dissolve the pulp tissue. Indian ink was then injected into the pulp cavity to stain the pulp tissue. It was cleared in methyl salicylate after being decalcified with 5% nitric acid for 48 hours, and the root canal type was evaluated at a magnification of × 20 using a stereomicroscope.
The results are as follows;
There were statistically significant differences between the radiographs and clearing samples of the root canal types among examiners (p < 0.05). There might be differences in the root canal types among examiners when the same radiograph is used. Therefore, considering the difficulty in estimating the root canal types, clinicians need to be careful when interpreting radiographs before root canal therapy.
The purpose of this study was to investigate the function of calcitonin gene-related peptide (CGRP) in regulatory mechanism of pulpal microcirculation with the aim of elucidating neurogenic inflammation.
Experiments were performed on twelve cats under general anesthesia. CGRP was administered through the femoral vein to see the systemic influence and through the external carotid artery to see the local effect. Sympathetic nerve to the dental pulp was stimulated electrically and pulpal blood flow (PBF) was measured with a laser Doppler flowmeter on the canine teeth to the drug administration. The paired variables of control and experimental data were compared by paired
Systemic administration of CGRP (0.3 μg/kg) exerted decreases in systemic blood pressure and caused changes in PBF with an initial increase followed by decrease and a more marked second increase and decrease.
Close intra-arterial (i.a.) injection of CGRP (0.03 μ/kg) resulted in slight PBF increase. The effect of CGRP resulted in no significant increase in PBF in the presence of CGRP8-37.
The electrical stimulation of the sympathetic nerve alone resulted in PBF decreases. The i.a. administration of CGRP following the electrical stimulation of the sympathetic nerve compensated the decreased PBF. Therefore, CGRP effectively blocked the sympathetic nerve stimulation-induced PBF decrease.
Results of the present study have provided evidences that even though the local vasodilatory function of CGRP are weak, CGRP is effectively involved in blocking the vasoconstriction caused by sympathetic nerve stimulation in the feline dental pulp.
The aim of this study was to compare the length between the mesio-buccal and mesio-lingual canal of the mandibular molars before and after early coronal flaring at the different measuring time using several electronic apex locators. Fifty mandibular molars with complete apical formation and patent foramens were selected. After establishing the initial working length of the buccal and lingual canal of the mesial root using a surgical microscope (Carl Zeiss Co. Germany) at 25X with #15 K-file tip just visible at the foramen, radiographs were taken for the working length. After measuring the length of mesio-buccal and mesio-lingual canal (control group), the electronic lengths were measured at different times using several electronic apex locators (experimental groups; I-Root ZX, II-Bingo, III-Propex, IV-Diagnostic). After early coronal flaring using the K3 file, the additional electronic lengths were measured using the same manner.
The results were as follows: One canal has a correct working length for the mesial root of the mandibular molar, it can be used effectively for measuring the electronic working length of another canal when the files are superimposed or encountered at the apex. In addition, the accuracy of the electronic apex locators was increased as the measurement was accomplished after the early coronal flaring of the root canal and the measuring time was repeated.
The purpose of this study was to compare the shaping ability of the two different Ni-Ti file systems and the two different engine systems in simulated canals.
A total of four groups of each 10 were tested. Each group was instrumented with HeroShaper®and Endo-Mate2® (Group HE), HeroShaper® and Tecnika® (Group HT), ProFile® and Endo-Mate2® (Group PE), and ProFile® and Tecnika® (Group PT).
Canal preparation time was recorded. The images of pre- and post-instrumented root canals were scanned and superimposed. The amounts of increased width and centering ratio were measured and calculated at apical 1, 3 and 5 mm levels.
These data were statistically analyzed with one-way ANOVA and Duncan's multiple range test
The results of this study were as follows;
1. Canal preparation time of HT group was the shortest (p < 0.05).
2. The amount of increased canal width in HE group was significantly larger than PT group at apical 1 mm level (p < 0.05). At apical 3 mm level, PT group was significantly smaller than other groups (p < 0.05). At apical 5 mm level, PE group was significantly larger than PT group (p < 0.05).
3. The amount of centering ratio in HE group was significantly larger than other groups (p < 0.05). At apical 5 mm level, HT group was significantly larger than PE group and PT group (p < 0.05).
Under the condition of this study, torque-controlled endodontic motor is safer than no torque controlled motor, especially when the active file is used.
This study was performed to investigate the compatibility between 4 dentin adhesives and 4 resin luting cements.
Dentin adhesives used in this study were All-Bond 2 (Bisco Inc., Schaumbrug, IL, USA), Clearfil SE-Bond (Kuraray Medical Inc, Osaka, Japan), Prompt L-Pop (3M Dental Products, St. Paul, MN, USA), One-Up Bond F (Tokuyama corp., Tokyo, Japan). Resin luting cements used in this study were Choice (Bisco Inc., Schaumbrug, IL, USA), Panavia F (Kuraray Medical Inc, Osaka, Japan), RelyX ARC (3M Dental Products, St. Paul, MN, USA), Bistite II DC (Tokuyama corp., Tokyo, Japan). Combination of each dentin adhesive and corresponding resin cement was made to 16 experimental groups.
Flat dentin surfaces was created on mid-coronal dentin of extracted mandibular third molars, then dentin surface was polished with 320-grit silicon carbide abrasive papers.
Indirect resin composite block (Tescera, Bisco) was fabricated. Its surface for bonding to tooth was polished with silicon carbide abrasive papers. Each dentin adhesive was treated on tooth surface and resin composite overlay were luted with each resin cement. Each bonded specimen was poured in epoxy resin and sectioned occluso-gingivally into 1.0 mm thick slab, then further sectioned into 1.0 × 1.0 mm2 composite-dentin beams. Microtensile bond strength was tested at a crosshead speed of 1.0 mm/min. The data were analysed by one-way ANOVA and Duncan's multiple comparison tests.
The results of this study were as follows;
2-step self-etching dentin adhesive which has additional bonding resin is more compatible than 1-step self-etching dentin adhesive.