This systematic review and network meta-analysis aimed to answer the following focused research question: “Does the type of endodontic sealer affect the postoperative pain in patients who received endodontic treatment?” Different databases and grey literature were surveyed. Only one randomized controlled trial were included. The risk of bias in the studies was evaluated by using the Cochrane Collaboration’s tool. A random-effects meta-analysis was conducted to compare the risk and intensity of postoperative pain. The quality of the body of evidence was assessed using the Grading of Recommendations Assessment, Development, and Evaluation approach. Out of 11,601 studies, 15 remained for qualitative analyses and 12 for meta-analysis. Seven studies were classified at high risk of bias, and 8 studies raised some concerns. No significant differences between the endodontic materials were observed in the direct comparisons, both in risk and in intensity of postoperative pain (pairwise comparisons with 2 studies: I2 = 0%;
PROSPERO Identifier:
This study aimed to evaluate and compare the efficacy of the S1 reciprocating system and the D-Race retreatment rotary system for filling material removal and the apical extrusion of debris.
Sixty-four freshly extracted maxillary canines were shaped with size 10 and size 15 K-files, instrumented using ProTaper Gold under irrigation with 2.5% sodium hypochlorite (NaOCl), obturated according to the principle of thermo-mechanical condensation with gutta-percha and zinc oxide eugenol sealer, and allowed to set for 3 weeks at 37°C. Subsequently, the teeth were divided into a control group (
No significant differences were found between the D-Race and S1 groups for primary retreatment; however, using a complementary cleaning method increased the removal of remnant filling (
Classical removal of canal filling material may not be sufficient for root canal disinfection, although a complementary finishing approach improved the results. Nevertheless, all systems left some debris and caused apical extrusion.
This study evaluated the bond strength of various fiberglass post cementation techniques using different resin-based composites.
The roots from a total of 100 bovine incisors were randomly assigned to 5 treatment groups: G1, post + Scotchbond Multi-Purpose (SBMP) + RelyX ARC luting agent; G2, relined post (Filtek Z250) + SBMP + RelyX ARC; G3, individualized post (Filtek Z250) + SBMP; G4, individualized post (Filtek Bulk-Fill) + SBMP; G5, individualized post (Filtek Bulk-Fill Flow) + SBMP. The samples were subjected to the push-out (
The data for push-out bond strength presented higher values for G2 and G5, mainly in the cervical and middle thirds, and the data from the apical third showed a lower mean push-out bond strength in all groups. No significant difference was noted for pull-out bond strength among all groups. The most frequent failure modes observed were adhesive failure between dentine and resin and mixed failure.
Fiberglass post cementation using restorative and flowable bulk-fill composites with the individualization technique may be a promising alternative to existing methods of post cementation.
This study evaluated the presence of residual root canal filling material after retreatment using micro-computed tomography (micro-CT).
Extracted human teeth (single- and double-rooted,
The tested sealers showed no significant differences in the percentage of remaining filling material in single- and double-rooted teeth, although EndoSeal MTA showed the highest value in C-shaped roots (
Within the limitations of this study, a large amount of EndoSeal MTA remained after retreatment, especially in C-shaped root canals.
Magnetic resonance imaging (MRI) is an advanced diagnostic tool used in both medicine and dentistry. Since it functions based on a strong uniform static magnetic field and radiofrequency pulses, it is advantageous over imaging techniques that rely on ionizing radiation. Unfortunately, the magnetic field and radiofrequency pulses generated within the magnetic resonance imager interact unfavorably with dental materials that have magnetic properties. This leads to unwanted effects such as artifact formation, heat generation, and mechanical displacement. These are a potential source of damage to the oral tissue surrounding the affected dental materials. This review aims to compile, based on the current available evidence, recommendations for dentists and radiologists regarding the safety and appropriate management of dental materials during MRI in patients with orthodontic appliances, maxillofacial prostheses, dental implants, direct and indirect restorative materials, and endodontic materials.
The aim of the present study was to investigate the bond strength of RelyX Unicem (3M) to root canal dentin when used as an endodontic sealer.
Samples of 24 single-rooted teeth were prepared with Gates Glidden drills and K3 files. After that, the roots were randomly assigned to three experimental groups (
Epiphany SE/Resilon showed significantly lower push-out bond strength than both AH Plus/Gutta-Percha and RelyX Unicem/Gutta-Percha (
Under the present
This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials.
For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (α = 0.05).
The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO (Ângelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge.
On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses.
The purpose of this study was to evaluate
Endocem (Maruchi), white ProRoot MTA (Dentsply), white Angelus MTA (Angelus), and Super EBA (Bosworth Co.) were tested after set completely in an incubator at 37℃ for 7 days, Endocem was tested in two ways: 1) immediately after mixing (fresh specimens) and 2) after setting completely like other experimental materials. The methods for assessment included light microscopic examination, cell counting and WST-1 assay on human periodontal ligament cell.
In the results of microscopic examination and cell counting, Super EBA showed significantly lower viable cell than any other groups (
The cytotoxicity of the pozzolan cement (Endocem) was comparable with ProRoot MTA and Angelus MTA. Considering the difficult manipulation and long setting time of ProRoot MTA and Angelus MTA, Endocem can be used as the alternative of retrofilling material.
When a patient with a fractured anterior tooth visits the clinic, clinician has to restore the tooth esthetically and quickly. For esthetic resin restoration, clinician can use 'Natural Layering technique' and an index for palatal wall may be needed. In this case report, we introduce pre-restoration index technique on a Class IV defect, in which a temporary filling material is used for easy restoration. Chair-side index fabrication for Class IV restoration is convenient and makes a single-visit treatment possible.
The purpose of this study was to compare mineral trioxide aggregate (MTA; Dentsply, Tulsa Dental, Tulsa, OK, USA), which is widely used as root-end filling material, with DiaRoot BioAggregate (DB; Innovative BioCaramix Inc, Vancouver, BC, Canada), newly developed product, by using MG63 osteoblast-like cells. MTA, DB, and Intermediate Restorative Material (IRM; Dentsply Caulk, Milford, DE, USA) were used for root-end filling material while tissue culture plastic was used for control group. Each material was mixed and, the mixtures were left to set for 24 hours. MG63 cells were seeded to each group and then they were cultured for attachment for 4 hours. Following the attachment of cells to the root-end filling material, early cellular response was observed. After another 12 hours'culture, the level of attachment between cells and material was observed and in order to identify the effect of each material to bone formation, transforming growth factor beta1 (TGFβ1) and osteocalin (OC) were estimated by using enzyme-linked immunosorbent assay (ELISA), and the amount of alkaline phosphatase (ALP) was also measured. The data were analyzed using one-way ANOVA. As a result, only at OC and the number of cells which were attached to materials, there was no statistical difference between MTA and DB. At other items, there was statistically significant difference in all groups. Although DB has not shown exactly the same cellular response like that of MTA, the number of attached cells shows that biocompatibility of the material and OC indicates bone formation rate. Therefore, if DB is used for root end filling material, it is expected to lead to similar results to MTA.
We evaluated
Fifty-two single rooted, extracted teeth were instrumented and obturated with gutta percha and AH plus sealer. The apical 3mm of each root was resected and 3mm deep ultrasonic root end preparation was done. External surface of roots was coated with nail varnish. Prepared teeth were randomly divided into five groups; Negative control: completely covered with nail varnish; Positive control: coated with nail varnish except for apical foramen; Group 1 (retrofilled with Portland cement); Group 2 (retrofilled with MTA); Group 3 (retrofilled with MTA powder mixed with 4-META/MMA & TBB resin). Immediately after completion of root-end filling, all specimens were submerged in methylene blue dye for 72 hours in 37℃ incubator. The roots were longitudinally sectioned and measured for extent of dye penetration by three different examiners under microscope (×10). The results were statistically analyzed using one way ANOVA and Turkey's HSD test. No leakage was evident in negative control and complete leakage in positive control group. Group 3 showed significantly less leakage than group 1 and 2 (p < 0.01). There was no significant difference between group 1 and 2 (p > 0.01).
It was concluded that MTA powder with 4-META/MMA & TBB resin was excellent in reducing initial apical microleakage.
The purpose of this study was to measure the polymerization shrinkage and hygroscopic expansion of resin-based temporary filling materials and to evaluate microleakage at the interface between the materials and cavity wall.
Five resin-based temporary filing materials were investigated: Fermit (Vivadent), Quicks (Dentkist), Provifil (Promedica), Spacer (Vericom), Clip (Voco). Caviton (GC) was also included for comparison. Polymerization shrinkage of five resin-based temporary filling materials was measured using the bonded disc method. For the measurement of hygroscopic expansion, the discs of six cured temporary filling materials were immersed in saline and a LVDT displacement sensor was used to measure the expansion for 7 days. For estimating of microleakage, Class I cavities were prepared on 120 extracted human molars and randomly assigned to 6 groups of 20 each. The cavities in each group were filled with six temporary filling materials. All specimens were submitted to 1000 thermo-cycles, with temperature varying from 5℃/55℃. Microleakage was determined using a dye penetration test.
The results were as follows:
Fermit had significantly less polymerization shrinkage than the other resin-based temporary filling materials. Fermit (0.22 %) < Spacer (0.38 %) < Quicks (0.64 %), Provifil (0.67 %), Clip (0.67 %) Resin-based temporary filling materials showed 0.43 - 1.1 % expansion in 7 days. Fermit showed the greatest leakage, while Quicks exhibited the least leakage. There are no correlation between polymerization shrinkage or hygroscopic expansion and microleakage of resin-based temporary filling materials.
This study was performed to assess the radiopacity of a variety of canal filling and retrograde root-end filling materials according to the specification concerning root canal obturation materials.
Ten materials including Gutta-percha pellets, amalgam, Fuji II LC, Dyract® AP, Super EBA®, IRM®, AH 26®, Sealapex™, Tubli-Seal™ and dentin were evaluated in this study. In the first part, densitometric reading of an each step of aluminum step wedge on occlusal film were performed at 60 kVp (0.2, 0.3, 0.4 s), 70 kVp (0.2, 0.3, 0.33 s) to decide appropriate voltage and exposure time. In the second part, ten specimens which are 5 mm in diameter and 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 mm in thickness, were fabricated from each material studied. The specimens were radiographed simultaneously with an aluminum step wedge under decided condition (60 kVp, 0.2 s). The mean radiographic density values of the materials were transformed into radiopacity expressed equivalent thickness of aluminum (mm Al).
The following results were obtained.
Among the various conditions including 0.2 s, 0.3 s, 0.4 s at 60 kVp and 0.2 s, 0.3 s, 0.33 s at 70 kVp, the appropriate voltage and exposure time that meet the requirement of density from 0.5 to 2.0 was 0.2 s at 60 kVp. All of the materials in this study had greater radiopacity than the minimun level recommended by ISO No. 4049 standards. Most of the materials had greater radiopacity than 3 mm Al requirement of ANSI/ADA specification No. 57 (2000) and ISO No. 6876 (2001) standards except for Fuji II LC and Dyract.
It suggests that all experimental canal filling and retrograde root-end filling materials have a sufficient radiopacity that meet the requirement concerning root canal obturation materials except for Fuji II LC and Dyract.
The purpose of this study was to evaluate the apical sealing ability of Super-EBA, MTA and Dyract-flow as retrofilling materials. Forty-eight extracted human teeth with straight and single root canal were used in this study. The root canals were prepared to a #40 apical canal size and obturated with gutter-percha. Apicoectomies were performed and root end cavities were prepared to a depth of 3mm using an ultrasonic device. The root end cavities were filled with Super-EBA, MTA or Dyract-flow. Leakage was measured using an electrochemical technique for 4 weeks.
According to this study, the results were as follows.
1. Increasing leakage with time was observed in all groups.
2. No significant difference was noted among the 3 groups with time (p = 0.216).
3. No significant difference was noted among the 3 groups when measured within the same time interval (p = 0.814).
The results of this study suggest that the sealing ability of Dyract-flow is equal to that of Super-EBA and MTA, and Dyract-flow may be an alternative to other materials for root-end filling.
The purpose of this study is to evaluate the sealing effect of several root-end filling materials using spectrophotometric analysis. 180 single root teeth with one canal were instrumented and canal filled. Root resected and root end preparation was made. Teeth were randomly classified to 5 experimental group(MTA, EBA, IRM, TCP, ZOE) and 1 control group according to root-end filling material MTA group used PRO ROOT MTA, EBA group used Super EBA, TCP group used NEW APATITE LINER TYPE II main component of which is α-tricalcium phosphate(TCP). According to manufacture's instruction experimental material was mixed and retrfilled. After 2% methylene blue solution penetration absorbance for each test sample was measured with spectrophotometer (JASCO UV-530, Japan).
The mean absorbance of control and experimental group was as follows;
MTA : 0.092, IRM : 0.226, Super EBA : 0.255, ZOE : 0.374, Control : 0.425, TCP : 0.501 and the result analyzed by Turkey test at P=0.05 level.
Conclusions of this study are as follows;
The absorbance increase in follwing sequence MTA, IRM, Super EBA, ZOE, Control, TCP. MTA showed the least leakage but was not significant with IRM or Super EBA and was significant with control or TCP(p<0.05). TCP had the most leakage and was not significant with control group.