Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Search

Page Path
HOME > Search
6 "Antibacterial effect"
Filter
Filter
Article category
Keywords
Publication year
Authors
Research Articles
Antibacterial effect of urushiol on E. faecalis as a root canal irrigant
Sang-Wan Kim, Dong-Hoon Shin
Restor Dent Endod 2017;42(1):54-59.   Published online January 25, 2017
DOI: https://doi.org/10.5395/rde.2017.42.1.54
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to compare the antibacterial activity of urushiol against Enterococcus faecalis (E. faecalis) to that of NaOCl.

Materials and Methods

The canals of thirty two single rooted human teeth were instrumented with Ni-Ti files (ProTaper Next X1, X2, X3, Dentsply). A pure culture of E. faecalis ATCC 19433 was prepared in sterile brain heart infusion (BHI) broth. The teeth were submerged in the suspension of E. faecalis and were incubated at 37℃ for 7 days to allow biofilm formation. The teeth were randomly divided into three experimental groups according to the irrigant used, and a negative control group where no irrigant was used (n = 8). Group 1 used physiologic normal saline, group 2 used 6% NaOCl, and group 3 used 10 wt% urushiol solution. After canal irrigation, each sample was collected by the sequential placement of 2 sterile paper points (ProTaper NEXT paper points, size X3, Dentsply). Ten-fold serial dilutions on each vials, and 100 µL were cultured on a BHI agar plate for 8 hours, and colony forming unit (CFU) analysis was done. The data were statistically analyzed using Kruskal-Wallis and Mann-whitney U tests.

Results

Saline group exhibited no difference in the CFU counts with control group, while NaOCl and urushiol groups showed significantly less CFU counts than saline and control groups (p < 0.05).

Conclusions

The result of this study suggests 10% urushiol and 6% NaOCl solution had powerful antibacterial activity against E. faecalis when they were used as root canal irrigants.

  • 24 View
  • 0 Download
Close layer
Comparative assessment of antibacterial activity of different glass ionomer cements on cariogenic bacteria
Rahul Gaybarao Naik, Arun Suresh Dodamani, Mahesh Ravindra Khairnar, Harish Chaitram Jadhav, Manjiri Abhay Deshmukh
Restor Dent Endod 2016;41(4):278-282.   Published online September 20, 2016
DOI: https://doi.org/10.5395/rde.2016.41.4.278
AbstractAbstract PDFPubReaderePub
Objectives

Glass ionomer cements (GICs), which are biocompatible and adhesive to the tooth surface, are widely used nowadays for tooth restoration. They inhibit the demineralization and promote the remineralization of the tooth structure adjacent to the restoration, as well as interfere with bacterial growth. Hence, the present study was conducted to assess and compare the antimicrobial activity of three commercially available GICs against two cariogenic bacteria.

Materials and Methods

An agar plate diffusion test was used for evaluating the antimicrobial effect of three different GICs (Fuji IX, Ketac Molar, and d-tech) on Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus). Thirty plates were prepared and divided into two groups. The first group was inoculated with S. mutans, and the second group was inoculated with L. acidophilus. These plates were then incubated at 37℃ for 24 hours. Zones of bacterial growth inhibition that formed around each well were recorded in millimeters (mm).

Results

The zones of inhibition for Fuji IX, Ketac Molar, and d-tech on S. mutans were found to be 10.84 ± 0.22 mm, 10.23 ± 0.15 mm, and 15.65 ± 0.31 mm, respectively, whereas those for L. acidophilus were found to be 10.43 ± 0.12 mm, 10.16 ± 0.11 mm, and 15.57 ± 0.13 mm, respectively.

Conclusions

D-tech cement performed better in terms of the zone of bacterial inhibition against the two test bacteria, than the other two tested glass ionomers.

  • 20 View
  • 0 Download
Close layer
Inhibitory effect on Streptococcus mutans and mechanical properties of the chitosan containing composite resin
Ji-Sun Kim, Dong-Hoon Shin
Restor Dent Endod 2013;38(1):36-42.   Published online February 26, 2013
DOI: https://doi.org/10.5395/rde.2013.38.1.36
AbstractAbstract PDFPubReaderePub
Objectives

This study evaluated the antibacterial effect and mechanical properties of composite resins (LCR, MCR, HCR) incorporating chitosan with three different molecular weights (L, Low; M, Medium; H, High).

Materials and Methods

Streptococcus (S). mutans 100 mL and each chitosan powder were inoculated in sterilized 10 mL Brain-Heart Infusion (BHI) solution, and was centrifuged for 12 hr. Absorbance of the supernatent was measured at OD660 to estimate the antibacterial activities of chitosan. After S. mutans was inoculated in the disc shaped chitosan-containing composite resins, the disc was cleansed with BHI and diluted with serial dilution method. S. mutans was spread on Mitis-salivarius bacitracin agar. After then, colony forming unit (CFU) was measured to verify the inhibitory effect on S. mutans biofilm. To ascertain the effect on the mechanical properties of composite resin, 3-point bending and Vickers hardness tests were done after 1 and 3 wk water storage, respectively. Using 2-way analysis of variance (ANOVA) and Scheffe test, statistical analysis was done with 95% significance level.

Results

All chitosan powder showed inhibition effect against S. mutans. CFU number in chitosan-containing composite resins was smaller than that of control resin without chitosan. The chitosan containing composite resins did not show any significant difference in flexural strength and Vickers hardness in comparison with the control resin. However, the composite resin, MCR showed a slightly decreased flexural strength and the maximum load than those of control and the other composite resins HCR and LCR.

Conclusions

LCR and HCR would be recommended as a feasible antibacterial restorative due to its antibacterial nature and mechanical properties.

  • 25 View
  • 0 Download
Close layer
Original Articles
Comparison of Antibacterial effect of Listerine® with Various root canal irrigants
Young Hun Kim, Min-Kyung Kang, Eun-Kyoung Choi, So-Young Yang, Inseok Yang, In-Chol Kang, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
J Korean Acad Conserv Dent 2009;34(6):500-507.   Published online November 30, 2009
DOI: https://doi.org/10.5395/JKACD.2009.34.6.500
AbstractAbstract PDFPubReaderePub

The purpose of this study is to compare the antibacterial effect of Listerine® on two microorganisms (P. gingivalis and E. faecalis) with various root canal irrigants (NaOCl, CHX, EDTA) and to identify possibility of using Listerine® as a root canal irrigant. Porphyromonas gingivalis ATCC 3327 and Enterococcus faecalis ATCC 29212 were used in this experiment. For the test irrigants, 0.5%, 1%, 2.5%, 5.25% NaOCl, 0.1%, 0.2%, 1%, 2% CHX, 0.5M EDTA (18.6% EDTA) and Listerine® were prepared. Distiled water was used as control. Two methods-1) Comparison of turbidity in broth and 2) Agar diffusion test-were used to determine the extent of antibacterial effect of Listerine® and to compare it with that of NaOCl, CHX, and EDTA. All solutions tested were effective against two bacterial strains compared with control (p<0.001). Any concentration of NaOCl, CHX, and EDTA showed similarly high effectiveness against all bacterial strains. In all experiment, Listerine® showed significantly low antibacterial effect compared with the other root canal irrigants (p<0.05).

In conclusion, the results reflect remarkably low antibacterial effect of Listerine® as compared with root canal irrigants in general so it is not suitable for the root canal irrigant.

  • 21 View
  • 0 Download
Close layer
Antibacterial effect of polyphosphate on endodontopathic bacteria
Jeong-Hee Shin, Sang-Jin Park, Gi-Woon Choi
J Korean Acad Conserv Dent 2003;28(6):435-448.   Published online November 30, 2003
DOI: https://doi.org/10.5395/JKACD.2003.28.6.435
AbstractAbstract PDFPubReaderePub

This study was performed to observe the antibacterial effect of polyphosphate (polyP) with various chain lengths (P3~P75) on virulent, invasive strains of P. gingivalis A7A1-28 and W50, and multidrug resistant E. faecalis ATCC29212. P. gingivalis strains were grown in brain-heart infusion broth (BHI) containing hemin and vitamin K with or without polyP. PolyP was added at the very beginning of the culture or during the exponential growth phase of the culture. Inhibition of the growth of P. gingivalis was determined by measuring the absorbancy at 540nm of the grown cells. Viable cell counts of the culture and release of intracellular nucleotide from P. gingivalis were measured. E. faecalis was grown in plain BHI with antibiotics alone or in combination with polyP(calgon; 0.1~1.0%) and the bacterial absorbancy was measured.

The overall results suggest that polyP has a strong antibacterial effect on the growth of the virulent strains of P. gingivalis and the antibacterial activity of polyP seems largely bactericidal, accompanying bacteriolysis in which chelation phenomenon is not involved. Although polyP does not exert antibacterial activity against E. faecalis, it appears to increase antibacterial effect of erythromycin and tetracycline on the bacterium. Therefore, polyP alone or in combination with antibiotics may be developed as a candidate for the agent controlling oral infections including endodontic infection.

  • 25 View
  • 0 Download
Close layer
A study of ionic dissociation on various calcium hydroxide pastes using molecular sieving model
Kyoung-Sun Lee, Seung-Jong Lee
J Korean Acad Conserv Dent 2002;27(6):632-643.   Published online November 30, 2002
DOI: https://doi.org/10.5395/JKACD.2002.27.6.632
AbstractAbstract PDFPubReaderePub

The purpose of this study was two-fold. First was to evaluate whether the molecular sieving model was appropriate for ionic dissociation experiment. Second was to compare the dissociation of calcium and hydroxyl ions from five types of calcium hydroxide pastes (Pure calcium hydroxide paste, DT temporary dressing®, Metapaste®, Chidopex®, Metapex®) in three vehicles (aqueous, viscous and oily) and the antibacterial effect.

Each calcium hydroxide pastes was placed into 0.65ml tube with cap and then 15% polyacrylamide gel was placed onto calcium hydroxide pastes. After the gel was hardened, the tubes were filled with tridistilled water (pH 7.14) and closed with cap. The tubes were stored in 37℃, 100% incubator. The pH reading and the concentration of calcium ions were taken at 1, 4, 7, 10, and 14 days. The brain heart infusion agar plates with S. mutans and A. actinomycetemcomitans were used for antibacterial activity test. Middle of agar plate was filled with the calcium hydroxide pastes. The plates were incubated at 37℃ and observations were made to detect the zones of inhibition. These data were evaluated statistically by use of the analysis of variance and duncan test.

The results were as follows.

1. In fresh mixing state, the pH of five types of calcium hydroxide pastes were measured between 12.5 and 12.8.

2. The pH was increased in all five types of calcium hydroxide pastes compared with control group. In 14 days, Pure calcium hydroxide paste (11.45) and DT temporary dressing® (11.33) showed highest pH, followed by Metapaste® (9.49), Chidopex® (8.37) and Metapex® (7.59).

3. Calcium was higher in all five types of calcium hydroxide pastes compared with control group. In 14 days, Pure calcium hydroxide paste (137.29 mg%) and DT temporary dressing® (124.6 mg%) showed highest value, followed by Metapaste® (116.74 mg%), Chidopex® (111.84 mg%) and Metapex® (60.22 mg%).

4. The zones of bacterial inhibition were seen around all five types of calcium hydroxide pastes. Chidopex® and Metapex® groups which include iodoform were observed significantly larger zone of inhibition in A. actinomycetemcomitans compared with the other calcium hydroxide groups (p<0.05). However, Metapex® showed the least antibacterial effect on S. mutans compared with other groups (p<0.05).

The molecular sieving model was found to be acceptable in dissociation experiment of hydroxyl and calcium ions when compared with the previous tooth model study. But this model was not appropriate for the antibacterial test.

  • 19 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP