In clinic, esthetic restoration of a defective natural tooth with composite resin is challenging procedure and needs complete understanding of the color of tooth itself and materials used. The optical characteristics of the composites are different because the chemical compositions and microstructures are not same.
This review provided basic knowledge of the color and the color measurement devices, and analyze the color of the natural tooth. Further, the accuracy of the shade tab, color of the composite resins before and after curing, effect of the water, food and bleaching agent, and translucency, opalescence, and fluorescence effects were evaluated.
The purpose of this study was to evaluate µTBS (microtensile bond strength) of current dentin bonding adhesives which have different hydrophobicity with low-shrinkage silorane resin.
Thirty-six human third molars were used. Middle dentin was exposed. The teeth were randomly assigned to nine experimental groups: Silorane self-etch adhesives (SS), SS + phosphoric acid etching (SS + pa), Adper easy bond (AE), AE + Silorane system bonding (AE + SSb), Clearfil SE bond (CSE), CSE + SSb, All-Bond 2 (AB2), AB2 + SSb, All-Bond 3 (AB3). After adhesive's were applied, the clinical crowns were restored with Filtek LS (3M ESPE). The 0.8 mm × 0.8 mm sticks were submitted to a tensile load using a Micro Tensile Tester (Bisco Inc.). Water sorption was measured to estimate hydrophobicity adhesives.
µTBS of silorane resin to 5 adhesives: SS, 23.2 MPa; CSE, 19.4 MPa; AB3, 30.3 MPa; AB2 and AE, no bond. Additional layering of SSb: CSE + SSb, 26.2 MPa; AB2 + SSb, 33.9 MPa; AE + SSb, no bond. High value of µTBS was related to cohesive failure. SS showed the lowest water sorption. AE showed the highest solubility.
The hydrophobicity of adhesive increased, and silorane resin bond-strength was also increased. Additional hydrophobic adhesive layer did not increase the bond-strength to silorane resin except AB2 + SSb. All-Bond 3 showed similar µTBS & water sorption with SS. By these facts, we could reach a conclusion that All-Bond 3 is a competitive adhesive which can replace the Silorane adhesive system.
The usage of fluoride varnish for a moderate to low caries-risk group has not been well validated. This study aimed to evaluate the preventive and therapeutic efficacies of fluoride varnish on the initiated root caries.
Ten premolars were sectioned into quarters, further divided into two windows, one of which was painted with Fluor Protector (1,000 ppm fluoride, Ivoclar Vivadent). An initial lesion with a well-preserved surface layer was produced by pH cycling. Scanned line analysis using energy dispersive spectrometry determined the weight percentages of Ca and P in the demineralized layer. Scanning Electron microscopy and confocal laser scanning microscopy (CLSM) evaluated the varnish-applied root surfaces.
The mean lesion depth (SD) was 12.3 (2.6) µm (single cycling) and 19.6 (3.8) µm (double cycling). Double cycling extended the lesion depth, but induced no more mineral loss than single cycling (
When a mild acid challenge initiated root tissue demineralization, the application of low-concentration fluoride varnish did not influence the lesion depth or the mineral composition of the subsurface lesion.
The aim of this study was to evaluate the various NiTi rotary instruments regarding their ability to provide a circular apical preparation.
50 single canal roots were selected, cut at the cementodentinal junction and the coronal 1/3 of the canals was flared using Gates Glidden burs. Samples were randomly divided into 5 experimental groups of 10 each. In group I, GT files, Profile 04 and Quantec #9 and #10 files were used. In Group II Lightspeed was used instead of Quantec. In Group III, Orifice shaper, Profile .06 series and Lightspeed were used. In Group IV, Quantec #9 and #10 files were used instead of Lightspeed. In Group V, the GT file and the Profile .04 series were used to prepare the entire canal length. All tooth samples were cut at 1 mm, 3 mm and 5 mm from the apex and were examined under the microscope.
Groups II and III (Lightspeed) showed a more circular preparation in the apical 1mm samples than the groups that used Quantec (Group I & IV) or GT files and Profile .04 series.(Group V)(
Lightspeed showed circular preparation at apical 1 mm more frequently than other instruments used in this study. However only 35% of samples showed circularity even in the Lightspeed Group which were enlarged 3 ISO size from the initial apical binding file (IAF) size. So it must be considered that enlarging 3 ISO size isn't enough to make round preparation.
This clinical study evaluated the effect of light activation on the whitening efficacy and safety of in-office bleaching system containing 15% hydrogen peroxide gel.
Thirty-three volunteers were randomly treated with (n = 17, experimental group) or without light activation (n = 16, control group), using Zoom2 white gel (15% H2O2, Discus Dental) for a total treatment time of 45 min. Visual and instrumental color measurements were obtained using Vitapan Classical shade guide and Shadepilot (DeguDent) at screening test, after bleaching, and 1 month and 3 month after bleaching. Data were analyzed using
Zoom2 white gel produced significant shade changes in both experimental and control group when pre-treatment shade was compared with that after bleaching. However, shade difference between two groups was not statistically significant (
The application of light activation with Zoom2 white gel system neither achieved additional whitening effects nor showed more detrimental influences.
This study investigated the optimal combination of 3-component photoinitiation system, consisting of CQ, p-octyloxy-phenyl-phenyl iodonium hexafluoroantimonate (OPPI), and 2-dimethylaminoethyl methacrylate (DMAEMA) to increase the degree of conversion of resin monomers, and analyze the effect of the ratio of the photoinitiator to the co-initiator.
Each photoinitiators (CQ and OPP) and co-initiator (DMAEMA) were mixed in three levels with 0.2 wt.% (low concentration, L), 1.0 wt.% (medium concentration, M), and 2.0 wt.% (high concentration, H). A total of nine groups using the Taguchi method were tested according to the following proportion of components in the photoinitiator system: LLL, LMM, LHH, MLM, MMH, MHL, HLH, HML, HHM. Each monomer was polymerized using a quartz-tungsten-halogen curing unit (Demetron 400, USA) for 5, 20, 40, 60, 300 sec and the degree of conversion (DC) was determined at each exposure time using FTIR.
Significant differences were found for DC values in groups. MMH group and HHM group exhibited greater initial DC than the others. No significant difference was found with the ratio of the photoinitiators (CQ, OPPI) to the co-initiator (DMAEMA). The concentrations of CQ didn't affect the DC values, but those of OPPI did strongly.
MMH and HHM groups seem to be best ones to get increased DC. MMH group is indicated for bright, translucent color and HHM group is good for dark, opaque colored-resin.
This study investigated the effects of the color components of light-cured composite resin before and after polymerization on degree of conversion (DC) and biaxial flexural strength (FS).
Four enamel shades (A1, A2, A3, A4) and two dentin shades (A2O, A3O) of Premisa (Kerr Co.) and Denfil (Vericom Co.) were evaluated on their CIE L*, a*, b* color components using the spectrophotometer before curing, after curing and at 7 day. The DC of same specimens were measured with Near-infrared spectrometer (Nexus, Thermo Nicolet Co.) at 2 hr after cure and at 7 day. Finally, the FS was obtained after all the other measurements were completed at 7 day. The correlations between each color component and DC and FS were evaluated.
The light-curing of composite resin resulted in color changes of Premisa in red-blue direction and Denfil in green-blue direction. The DC and FS were affected by product, time and shade (3-way ANOVA,
The DC and FS of the light-curing composite resin were affected by the color components of the material before and after polymerization.
The clinical diagnosis of ankylosis can be made only when the affected tooth gives positive evidence of an inability to move. The inability to move is demonstrated either as a failure of the tooth to move with normal vertical dental alveolar growth or a failure of the tooth to move when the tooth is subjected to an orthodontic force system. This case report describes the autotransplantation of an ankylosed maxillary canine.