The purpose of this study was to observe the change in the viscoelastic properties of thermoplasticized injectable root canal filling materials as a function of temperature and to compare the handling characteristics of these materials.
Three commercial gutta perchas and Resilon (Pentron Clinical Technologies) in a pellet form were heated in the Obtura-II system (Obtura Spartan) at 140℃ and 200℃, and the extrusion temperature of the thermoplasticized materials was measured. The viscoelastic properties of the materials as a function of temperature were evaluated using a rheometer. The elastic modulus
The three gutta perchas had dissimilar profiles in viscoelastic properties with varying temperature. The phase transition of softened materials into solidification occurred at 40℃ to 50℃, and the onset temperatures obtained by a rheometer and a DSC were similar to each other. The onset temperature of phase transition and the consistency upon compaction pressure were different among the materials (
The rheological characteristics of the thermoplasticized root canal filling materials changed under a cooling process. The dissimilar viscoelastic properties among the materials require different handling characteristics during an injecting and compacting procedure.
The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by methacrylate-based root canal sealer or 2 different self-adhesive resin cements. Seventy single-rooted extracted human teeth were sectioned at the CEJ perpendicular to the long axis of the roots with diamond disk. Canal preparation was performed with crown-down technique using Profile NiTi rotary instruments and GG drill. Each canal was prepared to ISO size 40, .04 taper and 1 mm short from the apex. The prepared roots were randomly divided into 4 experimental groups of 15 roots each and 5 roots each for positive and negative control group. The root canals were filled by lateral condensation as follows. Group 1: Guttapercha with AH-26, Group 2: Resilon with RealSeal primer & sealer, Group 3: Resilon with Rely-X Unicem, Group 4: Resilon with BisCem. After stored in 37℃, 100% humidity chamber for 7 days, the roots were coated with 2 layers of nail varnish except apical 3 mm. The roots were then immersed in 1% methylene blue dye for 7 days. Apical microleakage was measured by a maximum length of linear dye penetration after roots were separated longitudinally. One way ANOVA and Scheffe's post-hoc test were performed for statistical analysis. Group 1 showed the least apical leakage and there was no statistical significance between Group 2, 3, 4. According to the results, the self adhesive resin cement is possible to use as sealer instead of primer & sealant when root canal filled by Resilon.
The purpose of this study was to compare the apical microleakage in root canal filled with Resilon by several self-etching primers and methacrylate-based root canal sealer. Seventy single-rooted human teeth were used in this study. The canals were instrumented by a crown-down manner with Gate-Glidden drills and .04 Taper Profile to ISO #40. The teeth were randomly divided into four experimental groups of 15 teeth each according to root canal filling material and self-etching primers and two control groups (positive and negative) of 5 teeth each as follows: group 1 - gutta percha and AH26® sealer; group 2 - Resilon, RealSeal™ primer and RealSeal™ sealer; group 3 - Resilon, Clearfil SE Bond® primer and RealSeal™ sealer group 4 - Resilon, AdheSe® primer and RealSeal™ sealer. Apical leakage was measured by a maximum length of linear dye penetration of roots sectioned longitudinally by diamond disk. Statistical analysis was performed using the One-way ANOVA followed by Scheffe's test. There were no statistical differences in the mean apical dye penetration among the groups 2, 3 and 4 of self-etching primers. And group 1, 2 and 3 had also no statistical difference in apical dye penetration. But, there was statistical difference between group 1 and 4 (p < 0.05). The group 1 showed the least dye penetration. According to the results of this study, Resilon with self-etching primer was not sealed root canal better than gutta precha with AH26® at sealing root canals. And there was no significant difference in apical leakage among the three self-etching primers.
The purpose of this study was to evaluate whether intracanal irrigation method could affect the adhesion between intracanal dentin and root canal filling materials (Gutta-percha/AH 26 sealer and Resilon/Epiphany sealer).
Thirty extracted human incisor teeth were prepared. Canals were irrigated with three different irrigation methods as a final rinse and obturated with two different canal filling materials (G groups : Gutta-percha/AH 26 sealer, R groups : Resilon/Epiphany sealer) respectively.
Group G1, R1 - irrigated with 5.25% NaOCl Group G2, R2 - irrigated with 5.25% NaOCl, sterile saline Group G3, R3 - irrigated with 5.25% NaOCl, 17% EDTA, sterile saline
Thirty obturated roots were horizontally sliced and push-out bond strength test was performed in the universal testing machine. After test, the failure patterns of the specimens were observed using Image-analyzing microscope.
The results were as follows.
Gutta-percha/AH 26 sealer groups had significantly higher push-out bond strength compared with the Resilon/Epiphany sealer groups (p < 0.05). Push-out bond strength was higher when using 17% EDTA followed by sterile saline than using NaOCl as a final irrigation solution in the Resilon/Epiphany sealer groups (p < 0.05). In the failure pattern analysis, there was no cohesive failure in Group G1, G2, and R1. Gutta-percha/AH 26 sealer groups appeared to exhibit predominantly adhesive and mixed failure patterns, whereas Resilon/Epiphany sealer groups exhibited mixed failures with the cohesive failure occurred within the Resilon substrate.
The purpose of this study was to evaluate the thermal expansion characteristics of injectable thermoplasticized gutta-perchas and a Resilon. The materials investigated are Obtura gutta-percha, Diadent gutta-percha, E&Q Gutta-percha Bar and Epiphany (Resilon).
The temperature at the heating chamber orifice of an Obtura II syringe and the extruded gutta-percha from the tip of both 23- and 20-gauge needle was determined using a Digital thermometer. A cylindrical ceramic mold was fabricated for thermal expansion test, which was 27 mm long, with an internal bore diameter of 3 mm and an outer diameter of 10 mm. The mold was filled with each experimental material and barrel ends were closed with two ceramic plunger. The samples in ceramic molds were heated in a dilatometer over the temperature range from 25℃ to 75℃. From the change of specimen length as a function of temperature, the coefficients of thermal expansion were determined.
There was no statistical difference between four materials in the thermal expansion in the range from 35℃ to 55℃ (p > 0.05). However, Obtura Gutta-percha showed smaller thermal expansion than Diadent and Metadent ones from 35℃ to 75℃ (p < 0.05). The thermal expansion of Epiphany was similar to those of the other gutta-percha groups.
The aim of this study was to evaluate the retrievability of Resilon as a root canal filling material. Twenty-seven human single-rooted extracted teeth were instrumented utilizing a crown down technique with Gates-Glidden burs and ProFile system. In group1 (n = 12) canals were obturated with gutta percha and AH-26 plus sealer using a continuous wave technique and backfilled. In group 2 (n = 15) Resilon was used as a filling material. Then teeth were sealed and kept in 37℃ and 100% humidity for 7 days. For retreatment, the samples were re-accessed and filling material was removed using Gates-Glidden burs and ProFiles. Teeth were sectioned longitudinally to compare the general cleanliness and amount of debris (× 75) using SEM. Chi-square test was used (α = 0.05) to analyze the data. The total time required for removal of filling materials was expressed as mean ± SD (min) and analyzed by the Student
The purpose of this study was to observe the effect of canal filling on the bacteria left in the dentinal tubules and to compare the sealing ability between Gutta-percha and Resilon. The bovine dentin block models were prepared.
Group 1 was the negative control. Group 2 was the positive control. Group 3 was filled with ZOE based sealer and Gutta-percha, Group 4 with resin based sealer and Gutta-percha, and Group 5 with resin based sealer and Resilon. After 24 hour, the blocks were incubated at 37℃ for 1, 2, 3 and 4 weeks on BHI agar plates.
The internal dentin portion of the blocks was removed using ISO 027, 029, 031, 035 round burs and the dentin chips were incubated at 37℃ for 24 hour. Following incubation, the optical density of the medium was measured. The data were statistically analysed using repeated measures ANOVA and one-way ANOVA.
The results were as follows,
1. There was statistically significant reduction in the number of E. faecalis of the group where dentinal tubules were completely sealed with nail varnish in comparison with the groups obturated with gutta-percha or resilon (p < 0.05).
2. In group 5, the number of E. faecalis in the dentinal tubules decreased significantly with time (p < 0.05), whereas in Group 3 and 4, there was no reduction in its number (p > 0.05).
3. Under the conditions of this experiment,