The purpose of this study was to evaluate the consistency of two electronic apex locators
Materials consisted of fifty two extracted premolars and two electronic apex locators; Root ZX (J. Morita, Osaka, Japan) and E-Magic Finder Deluxe (S-Denti, Cheonan, Korea). After access preparation, the teeth were embedded in a saline-mixed alginate model. Canal lengths of each tooth were measured at "0.5" and "Apex" mark of the apex locators, respectively so that each tooth had two measurements from 0.5 and Apex points. The file was fixed at final measurement using a glass ionomer cement. The apical 4 mm from the apex was exposed to measure the distance from the file tip to the major apical foramen of each tooth. Average distances and standard deviations were used to evaluate the consistency.
Results showed that all measurements of both Root ZX and E-Magic Finder located the major foramen the range of ± 0.5 mm level. Both apex locators showed better consistency at Apex mark than at 0.5 mark. The average distance of file tip-major foramen was - 0.18 mm at 0.5 mark and - 0.07 mm at Apex mark in Root ZX, - 0.25 mm at 0.5 mark and - 0.02 mm at Apex mark in E-Magic Finder. Standard deviation was 0.21 at 0.5 mark and 0.12 at Apex mark in Root ZX, 0.12 at 0.5 mark and 0.09 at Apex mark in E-Magic Finder.
This
The purpose of this study was to examine the viability of PDL cells in rat molars by using
A total of 74 Sprague-Dawley white female rats of 4 week-old with a body weight of 100 grams were used. The maxillary left and right, first and second molars were extracted as atraumatically as possible under ketamine anesthesia.
Ten teeth of each group were divided as six experimental groups depending upon the preservation. Cryopreservation groups were Group 1 (5% DMSO 6% HES in F medium), Group 2 (10% DMSO in F medium), Group 3 (5% DMSO 6% HES in Viaspan®), Group 4 (10% DMSO in Viaspan®) which were cryopreserved for 1 week and cold preservation groups were Group 5 (F medium), Group 6 (Viaspan®) at 4℃ for 1 week. Immediate extraction group was used as a control. After preservation and thawing, the
The value of optical density obtained after
In this study, the groups which were frozen with DMSO as a cryoprotectant and the groups with F medium showed the best results.
The purpose of this in vitro study was to evaluate the effect of surface defects and cross-sectional configuration of NiTi rotary files on the fatigue life under cyclic loading. Three NiTi rotary files (K3™, ProFile®, and HERO 642®) with #30/.04 taper were evaluated. Each rotary file was divided into 2 subgroups: control (no surface defects) and experimental group (artificial surface defects). A total of six groups of each 10 were tested. The NiTi rotary files were rotated at 300rpm using the apparatus which simulated curved canal (40 degree of curvature) until they fracture. The number of cycles to fracture was calculated and the fractured surfaces were observed with a scanning electron microscope. The data were analyzed statistically. The results showed that experimental groups with surface defects had lower number of cycles to fracture than control group but there was only a statistical significance between control and experimental group in the K3™ (p<0.05). There was no strong correlation between the cross-sectional configuration area and fracture resistance under experimental conditions. Several of fractured files demonstrated characteristic patterns of brittle fracture consistent with the propagation of pre-existing cracks.
This data indicate that surface defects of NiTi rotary files may significantly decrease fatigue life and it may be one possible factor for early fracture of NiTi rotary files in clinical practice.