Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Search

Page Path
HOME > Search
9 "Cross-section"
Filter
Filter
Article category
Keywords
Publication year
Authors
Research Articles
Predictor factors of 1-rooted mandibular second molars on complicated root and canal anatomies of other mandibular teeth
Hakan Aydın, Hatice Harorlı
Restor Dent Endod 2024;49(1):e2.   Published online January 3, 2024
DOI: https://doi.org/10.5395/rde.2024.49.e2
AbstractAbstract PDFPubReaderePub
Objectives

This study aimed to determine the effects of 1-rooted mandibular second molar (MnSM) teeth on root canal anatomy complexities of the mandibular central incisor (MnCI), mandibular lateral incisor (MnLI), mandibular canine (MnCn), mandibular first premolar (MnFP), mandibular second premolar (MnSP), and mandibular first molar (MnFM) teeth.

Materials and Methods

Cone-beam computed tomography images of 600 patients with full lower dentition were examined. Individuals with 1-rooted MnSMs were determined, and the complexity of root canal anatomy of other teeth was compared with individuals without 1-rooted MnSMs (Group-1; subjects with at least one 1-rooted MnSM, Group-2; subjects with more than a single root in both MnSMs). A second canal in MnCIs, MnLIs, MnCns, MnFPs, and MnSPs indicated a complicated root canal. The presence of a third root in MnFMs was recorded as complicated.

Results

The prevalence of 1-rooted MnSMs was 12.2%, with the C-shaped root type being the most prevalent (9%). There were fewer complicated root canals in MnCIs (p = 0.02), MnLIs (p < 0.001), and MnFPs (p < 0.001) in Group 1. The other teeth showed no difference between the groups (p > 0.05). According to logistic regression analysis, 1-rooted right MnSMs had a negative effect on having complex canal systems of MnLIs and MnFPs. Left MnSMs were explanatory variables on left MnLIs and both MnFPs.

Conclusions

In individuals with single-rooted MnSMs, a less complicated root canal system was observed in all teeth except the MnFMs.

  • 25 View
  • 1 Download
Close layer
Effect of surface treatment on the mechanical properties of nickel-titanium files with a similar cross-section
Sang Won Kwak, Joo Yeong Lee, Hye-Jin Goo, Hyeon-Cheol Kim
Restor Dent Endod 2017;42(3):216-223.   Published online June 28, 2017
DOI: https://doi.org/10.5395/rde.2017.42.3.216
AbstractAbstract PDFPubReaderePub
Objectives

The aim of this study was to compare the mechanical properties of various nickel-titanium (NiTi) files with similar tapers and cross-sectional areas depending on whether they were surface-treated.

Materials and Methods

Three NiTi file systems with a similar convex triangular cross-section and the same ISO #25 tip size were selected for this study: G6 (G6), ProTaper Universal (PTU), and Dia-PT (DPT). To test torsional resistance, 5 mm of the straightened file's tip was fixed between polycarbonate blocks (n = 15/group) and continuous clockwise rotation until fracture was conducted using a customized device. To evaluate cyclic fatigue resistance, files were rotated in an artificial curved canal until fracture in a dynamic mode (n = 15/group). The torsional data were analyzed using 1-way analysis of variance and the Tukey post-hoc comparison test, while the cyclic fatigue data were analyzed using the Mann-Whitney U test at a significance level of 95%.

Results

PTU showed significantly greater toughness, followed by DPT and G6 (p < 0.05). G6 showed the lowest resistance in ultimate torsional strength, while it showed a higher fracture angle than the other files (p < 0.05). In the cyclic fatigue test, DPT showed a significantly higher number of cycles to failure than PTU or G6 (p < 0.05).

Conclusions

Within the limitations of this study, it can be concluded that the torsional resistance of NiTi files was affected by the cross-sectional area, while the cyclic fatigue resistance of NiTi files was influenced by the surface treatment.

  • 16 View
  • 0 Download
Close layer
Review Article
Mechanical and geometric features of endodontic instruments and its clinical effect
Hyeon-Cheol Kim
J Korean Acad Conserv Dent 2011;36(1):1-11.   Published online January 14, 2011
DOI: https://doi.org/10.5395/JKACD.2011.36.1.1
AbstractAbstract PDFPubReaderePub
Abstract Introduction:

The aim of this paper is to discuss the mechanical and geometric features of Nickel-titanium (NiTi) rotary files and its clinical effects. NiTi rotary files have been introduced to the markets with their own geometries and claims that they have better ability for the root canal shaping than their competitors. The contents of this paper include the (possible) interrelationship between the geometries of NiTi file (eg. tip, taper, helical angle, etc) and clinical performance of the files as follows;

- Fracture modes of NiTi rotary files

- Non-cutting guiding tip and glide path

- Taper and clinical effects

- Cross-sectional area and clinical effects

- Heat treatments and surface characteristics

- Screw-in effect and preservation of root dentin integrity

- Designs for reducing screw-in effect

Conclusions:

Based on the reviewed contents, clinicians may have an advice to use various brands of NiTi rotary instruments regarding their advantages which would fit for clinical situation.

  • 23 View
  • 1 Download
Close layer
Original Articles
Effect of cross-sectional area of 6 nickel-titanium rotary instruments on the fatigue fracture under cyclic flexural stress: A fractographic analysis
Soo-Youn Hwang, So-Ram Oh, Yoon Lee, Sang-Min Lim, Kee-Yeon Kum
J Korean Acad Conserv Dent 2009;34(5):424-429.   Published online September 30, 2009
DOI: https://doi.org/10.5395/JKACD.2009.34.5.424
AbstractAbstract PDFPubReaderePub

This study aimed to assess the influence of different cross-sectional area on the cyclic fatigue fracture of Ni-Ti rotary files using a fatigue tester incorporating cyclical axial movement. Six brands of Ni-Ti rotary files (ISO 30 size with .04 taper) of 10 each were tested: Alpha system (KOMET), HeroShaper (MicroMega), K3 (SybronEndo), Mtwo (VDW), NRT (Mani), and ProFile (Dentsply). A fatigue-tester (Denbotix) was designed to allow cyclic tension and compressive stress on the tip of the instrument. Each file was mounted on a torque controlled motor (Aseptico) using a 1:20 reduction contra-angle and was rotated at 300 rpm with a continuous, 6 mm axial oscillating motion inside an artificial steel canal. The canal had a 60° angle and a 5 mm radius of curvature. Instrument fracture was visually detected and the time until fracture was recorded by a digital stop watch. The data were analyzed statistically. Fractographic analysis of all fractured surfaces was performed to determine the fracture modes using a scanning electron microscope. Cross-sectional area at 3 mm from the tip of 3 unused Ni-Ti instruments for each group was calculated using Image-Pro Plus (Imagej 1.34n, NIH). Results showed that NRT and ProFile had significantly longer time to fracture compared to the other groups (p < .05). The cross-sectional area was not significantly associated with fatigue resistance. Fractographycally, all fractured surfaces demonstrated a combination of ductile and brittle fracture. In conclusion, there was no significant relationship between fatigue resistance and the cross-sectional area of Ni-Ti instruments under experimental conditions.

  • 19 View
  • 0 Download
Close layer
Stress distribution for NiTi files of triangular based and rectangular based cross-sections using 3-dimensional finite element analysis
Hyun-Ju Kim, Chan-Joo Lee, Byung-Min Kim, Jeong-Kil Park, Bock Hur, Hyeon-Cheol Kim
J Korean Acad Conserv Dent 2009;34(1):1-7.   Published online January 31, 2009
DOI: https://doi.org/10.5395/JKACD.2009.34.1.001
AbstractAbstract PDFPubReaderePub

The purpose of this study was to compare the stress distributions of NiTi rotary instruments based on their cross-sectional geometries of triangular shape-based cross-sectional design, S-shaped cross-sectional design and modified rectangular shape-based one using 3D FE models.

NiTi rotary files of S-shaped and modified rectangular design of cross-section such as Mtwo or NRT showed larger stress change while file rotation during simulated shaping.

The stress of files with rectangular cross-section design such as Mtwo, NRT was distributed as an intermittent pattern along the long axis of file. On the other hand, the stress of files with triangular cross-section design was distributed continuously.

When the residual stresses which could increase the risk of file fatigue fracture were analyzed after their withdrawal, the NRT and Mtwo model also presented higher residual stresses.

From this result, it can be inferred that S-shaped and modified rectangular shape-based files were more susceptible to file fracture than the files having triangular shape-based one.

  • 22 View
  • 0 Download
Close layer
Stress distribution of three NiTi rotary files under bending and torsional conditions using 3-dimensional finite element analysis
Tae-Oh Kim, Chan-Joo Lee, Byung-Min Kim, Jeong-Kil Park, Bock Hur, Hyeon-Cheol Kim
J Korean Acad Conserv Dent 2008;33(4):323-331.   Published online July 31, 2008
DOI: https://doi.org/10.5395/JKACD.2008.33.4.323
AbstractAbstract PDFPubReaderePub

Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis.

Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account.

The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal.

Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.

  • 16 View
  • 0 Download
Close layer
Comparative study on morphology of cross-section and cyclic fatigue test with different rotary NiTi files and handling methods
Jae-Gwan Kim, Kee-Yeon Kum, Eui-Seong Kim
J Korean Acad Conserv Dent 2006;31(2):96-102.   Published online March 31, 2006
DOI: https://doi.org/10.5395/JKACD.2006.31.2.096
AbstractAbstract PDFPubReaderePub

There are various factors affecting the fracture of NiTi rotary files. This study was performed to evaluate the effect of cross sectional area, pecking motion and pecking distance on the cyclic fatigue fracture of different NiTi files. Five different NiTi files-Profile®(Maillefer, Ballaigue, Switzerland), ProTaper™ (Maillefer, Ballaigue, Switzerland), K3® (SybronEndo, Orange, CA), Hero 642® (Micro-mega, Besancon, France), Hero Shaper®(Micro-mega, Besancon, France)-were used. Each file was embedded in temporary resin, sectioned horizontally and observed with scanning electron microscope. The ratio of cross-sectional area to the circumscribed circle was calculated. Special device was fabricated to simulate the cyclic fatigue fracture of NiTi file in the curved canal,. On this device, NiTi files were rotated (300rpm) with different pecking distances (3 mm or 6 mm) and with different motions (static motion or dynamic pecking motion). Time until fracture occurs was measured. The results demonstrated that cross-sectional area didn't have any effect on the time of file fracture. Among the files, Profile® took the longest time to be fractured. Between the pecking motions, dynamic motion took the longer time to be fractured than static motion. There was no significant difference between the pecking distances with dynamic motion, however with static motion, the longer time was taken at 3mm distance. In this study, we could suggest that dynamic pecking motion would lengthen the time for NiTi file to be fractured from cyclic fatigue.

  • 20 View
  • 0 Download
Close layer
Effect of anticurvature filing method on preparation of the curved root canal using ProFile
Hyun-Ji Song, Juhea Chang, Kyung-Mo Cho, Jin-Woo Kim
J Korean Acad Conserv Dent 2005;30(4):327-334.   Published online July 30, 2005
DOI: https://doi.org/10.5395/JKACD.2005.30.4.327
AbstractAbstract PDFPubReaderePub

This study investigated the effect of anticurvature filing method on preparation of the curved root canal using ProFile.

Thirty six resin blocks were divided equally into three groups by instrumentation motions: anticurvature filing motion, circumferential filing motion and straight up-and-down motion. Each resin block was sectioned at 8 mm level from the apex and at the greatest curvature of the canal and reassembled in metal mold by a modified Bramante technique. All groups were instrumented with the ProFile system. At each levels, image of sectioned surface were taken using CCD camera under a stereomicroscope at ×40 magnification and stored. Distances of transportation at the inner and outer area of curvature and the centering ratio were determined and compared by statistical analysis, along with the assessment of the increase of root canal cross-sectional area.

The results were as follows;

1. In all groups, there was no statistical difference in the mean increase of root canal cross-sectional area, the centering ratio, and the mean distances of transportation at the inner area of curvature at each level.

2. At 8 mm level from the apex, the mean distances of transportation at the outer area of curvature decreases in following order anticurvature filing motion, circumferential filing motion, straight up-and-down motion but, no significant difference at the greatest curvature of the canal among three groups.

Effect of anticurvature filing motion using ProFile does not seem to be different from other instrumentation motions at the inner area of curvature in curved root canal.

  • 20 View
  • 0 Download
Close layer
Effect of surface defects and cross-sectional configuration on the fatigue fracture of NiTi rotary files under cyclic loading
Yu-Mi Shin, Eui-Sung Kim, Kwang-Man Kim, Kee-Yeon Kum
J Korean Acad Conserv Dent 2004;29(3):267-272.   Published online May 31, 2004
DOI: https://doi.org/10.5395/JKACD.2004.29.3.267
AbstractAbstract PDFPubReaderePub

The purpose of this in vitro study was to evaluate the effect of surface defects and cross-sectional configuration of NiTi rotary files on the fatigue life under cyclic loading. Three NiTi rotary files (K3™, ProFile®, and HERO 642®) with #30/.04 taper were evaluated. Each rotary file was divided into 2 subgroups: control (no surface defects) and experimental group (artificial surface defects). A total of six groups of each 10 were tested. The NiTi rotary files were rotated at 300rpm using the apparatus which simulated curved canal (40 degree of curvature) until they fracture. The number of cycles to fracture was calculated and the fractured surfaces were observed with a scanning electron microscope. The data were analyzed statistically. The results showed that experimental groups with surface defects had lower number of cycles to fracture than control group but there was only a statistical significance between control and experimental group in the K3™ (p<0.05). There was no strong correlation between the cross-sectional configuration area and fracture resistance under experimental conditions. Several of fractured files demonstrated characteristic patterns of brittle fracture consistent with the propagation of pre-existing cracks.

This data indicate that surface defects of NiTi rotary files may significantly decrease fatigue life and it may be one possible factor for early fracture of NiTi rotary files in clinical practice.

  • 17 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP