The bleaching of discolored nonvital teeth is conservative treatment that satisfy the cosmetic desire. The most common method for this treatment, walking bleaching, is using 30% hydrogen peroxide and sodium perborate.
Many alternatives are suggested for preventing the external cervical root resorption that is the common complication of the nonvital teeth bleaching with 30% hydrogen peroxide.
The same extent of oxidation reactions as that resulted by the bleaching with the application of 30% hydrogen peroxide and sodium perborate can also be acquired more safely by materials that contain 10% carbamide peroxide, used primarily for the bleaching of vital teeth. Therefore, this study was performed to evaluate the efficacy of 10% and 15% carbamide peroxide bleaching gel in nonvatal teeth bleaching.
The internal bleaching of intentionally discolored teeth was performed in vitro with 10% carbamide peroxide (Group 1), 15% carbamide peroxide (Group 2), mixture of distilled water and sodium perborate (Group 3), and mixture of 30% hydrogen peroxide and sodium perborate (Group 4). The bleaching materials were refreshed following 3, 6, 9 and 12 days. To evaluate the bleaching effect, the color change of the crowns was measured at 1, 2, 3, 4, 7 and 15 days of bleaching using the colorimeter.
The results were as follows :
1. L* and ΔE* values were increased with time in all bleaching agents(p<0.01).
2. There was no significant difference in L* and ΔE* value among bleaching agents.
3. ΔE* value higher than 3 was shown after 3 days of bleaching with 10% carbamide peroxide gel, 1 day with 15% carbamide peroxide gel, 4 days with mixture sodium perborate and distilled water and 4 days with mixture sodium perborate and 30% hydrogen peroxide, respectively.
These results revealed that the use of 10% and 15% carbamide peroxide bleaching gel in non-vital teeth bleaching is as effective as mixture of distilled water and sodium perborate and mixture of 30% hydrogen peroxide and sodium perborate. Accordingly, carbamide peroxide could be used clinically to bleach discolored non-vital teeth.
This study was performed to evaluate the temperature rise on various position of the Buchanan plugger, the peak temperature of plugger's type and the temperature change by its touching time of heat control spring.
The heat carrier system 'System B'(Model 1005, Analytic Technologies, USA) and the Buchanan's pluggers of F, FM, M and ML sizes are used for this study. The temperature was set to 200℃ which Dr. Buchanan's "continuous wave of condensation" technique recommended on digital display and the power level on it was set to 10. In order to apply heat on the Buchanan's pluggers, the heat control spring was touched for 1, 2, 3, 4 and 5 seconds respectively. The temperature rise on the surface of the pluggers were measured at 0.5 mm intervals from tip to 20 mm length of shank using the infrared thermography (Radiation Thermometer-IR Temper, NEC San-ei Instruments, Ltd, Japan) and TH31-702 Data capture software program (NEC San-ei Instruments, Ltd, Japan). Data were analyzed using a one way ANOVA followed by Duncan's multiple range test and linear regression test.
The results as follows.
1. The position at which temperature peaked was approximately at 0.5 mm to 1.5 mm far from the tip of Buchanan's pluggers (p<0.001). The temperature was constantly decreased toward the shank from the tip of it (p<0.001).
2. When the pluggers were heated over 5 seconds, the peak temperature by time of measurement revealed from 253.3±10.5℃ to 192.1±3.3℃ in a touch for 1 sec, from 218.6±5.0℃ to 179.5±4.2℃ in a touch for 2 sec, from 197.5±3.0℃ to 167.6±3.7℃ in a touch for 3 sec, from 183.7±2.5℃ to 159.8±3.6℃ in a touch for 4 sec and from 164.9±2.0℃ to 158.4±1.8℃ in a touch for 5 sec. A touch for 1 sec showed the highest peak temperature, followed by, in descending order, 2 sec, 3 sec, 4 sec. A touch for 5 sec showed the lowest peak temperature (p<0.001).
3. A each type of pluggers showed different peak temperatures. The peak temperature was the highest in F type and followed by, in descending order, M type, ML type. FM type revealed the lowest peak temperature (p<0.001).
The results of this study indicated that pluggers are designed to concentrate heat at around its tip, its actual temperature does not correlate well with the temperature which Buchanan's "continuous wave of condensation" technique recommend, and finally a quick touch of heat control spring for 1sec reveals the highest temperature rise.
One fifth dilution of formocresol is usually used for pulpotomy of the primary teeth and emergency pulpotomy of the permanent teeth. However, the use of formaldehyde has been subjected to criticism because it may be absorbed into the blood stream and become distributed systemically, it may also alter the pulp tissue rendering it immunologically active, and have carcinogenic potential. Recently Depulpin®(VoCo., Germany) gains popularity as a devitalizing agent during root canal therapy in spite of high concentration of 49% paraformaldehyde because it facilitate devitalization of pulp and make root canal therapy easier. But there have been not enough publications about the reaction of pulp and periapical tissue caused by Depulpin.
This study was performed to evaluate the histological changes in pulp and periapical tissue of rats after pulpotomy using formocresol and Depulpin and to elucidate the toxic effects of these agents. Thirty six Sprague-Dawley rats were anesthetized by intraperitoneal injection of ketamine. Maxillary first molar teeth were used for pulpotomy with formocresol and Depulpin. Rats were sacrificed after 2 days, 4 days, 1 week, 2 weeks, 3 weeks and 4 weeks respectively. Specimens were histologically observed by light microscope changes in pulp and periapical tissue. The obtained results were as follows.
1. Formocresol group
A zone of fixed tissue, in which odontoblasts could clearly be defined, was present directly underneath the pulpotomy dressing in almost all teeth of this group. This was followed by an area of necrotic tissue which resembled dried out fibrous tissue with no cellular detail except some pyknotic nuclei. In the specimens of after 2 days, 4 days, 1 week, 2 weeks in which vital tissue was present, it was separated from the fibrous area by a zone of inflammation. In the specimens of after 3 weeks and after 4 weeks, inflammatory infiltrate was in the periodontal ligament adjacent to the apical foramina of the teeth.
2. Depulpin® group
The area of necrotic tissue which had no cells and fibers, was present adjacent to the dressing. This was followed by dried out fibrous tissue with no cellular details except some pyknotic nuclei. A short stump of vital pulp with odontoblasts was present at the end of the canal after 2 days. Inflammatory infiltrate was in the periodontal ligament after 4 days and after 1week. Severe root resorption and necrosis of periapical tissue opposite the root resorption site were defined after 2 weeks and after 3 weeks. Periapical lesion which consist of necrotic tissue surrounded by a fibrous connective wall, was found after 4 weeks.
The results indicated that Depulpin can cause more adverse reaction to the dental pulp and periapical tissue than formocresol, and further studies are needed for its clinical use with safety.