This study aimed to compare the torsional and cyclic fatigue resistance of ProGlider (PG), WaveOne Gold Glider (WGG), and TruNatomy Glider (TNG).
A total of 15 instruments of each glide path system (
The WGG group showed greater cyclic fatigue resistance than the PG and TNG groups (
Reciprocating WGG instruments showed greater cyclic fatigue resistance, while TNG instruments were better in torsional fatigue resistance. The significance of these findings lies in the identification of the instruments’ clinical applicability to guide the choice of the most appropriate instrument and enable the clinician to provide a more predictable glide path preparation.
This study investigated the influence of glide path size and operating kinetics on the time to reach the working length and the fracture resistance of Twisted File (TF) and Endostar E3 files.
A total of 120 mandibular single-rooted premolars were selected. Two methods of kinetic motion (TF adaptive and continuous rotary motion) and file systems (TF and Endostar E3) were employed. The files were used in root canals prepared to apical glide path sizes of 15, 20, and 25. The time taken to reach the working length and the number of canals used before the instrument deformed or fractured were noted. Fractured instruments were examined with scanning electron microscopy.
The TF system took significantly more time to reach the working length than the Endostar E3 system. Both systems required significantly more time to reach the working length at the size 15 glide path than at sizes 20 and 25. A greater number of TFs than Endostar E3 files exhibited deformation, and a higher incidence of instrument deformation was observed in adaptive than in continuous rotary motion; more deformation was also observed with the size 15 glide path. One TF was fractured while undergoing adaptive motion.
No significant difference was observed between continuous rotary and adaptive motion. The TF system and adaptive motion were associated with a higher incidence of deformation and fracture. Apical glide path sizes of 20 and 25 required significantly less time to reach the working length than size 15.
To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental).
One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (
Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (
The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.
The aim of this study was to compare the mechanical properties of various nickel-titanium (NiTi) files with similar tapers and cross-sectional areas depending on whether they were surface-treated.
Three NiTi file systems with a similar convex triangular cross-section and the same ISO #25 tip size were selected for this study: G6 (G6), ProTaper Universal (PTU), and Dia-PT (DPT). To test torsional resistance, 5 mm of the straightened file's tip was fixed between polycarbonate blocks (
PTU showed significantly greater toughness, followed by DPT and G6 (
Within the limitations of this study, it can be concluded that the torsional resistance of NiTi files was affected by the cross-sectional area, while the cyclic fatigue resistance of NiTi files was influenced by the surface treatment.
This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations.
The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (
The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (
The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.
This study aimed to evaluate the relationship between the cyclic fatigue of a K3 file and internal stress intentionally induced until the activation of the auto-stop function of the torque-controlled motor.
K3 (Sybron Endo) .04 and .06 taper, size 25, 30, 35, 40 and 45 were used in this study. To give the internal stress, the K3 files were put into the .02 taper Endo-Training-Bloc (Dentsply Maillefer) until the activation of the auto-stop function of the torque-controlled motor. The rotation speed was 300 rpm and torque value was 1.0 N·cm. K3 were grouped by the number of induced internal stress and randomly distributed to 4 experimental groups (
Except .04 taper size 30 in Stress 1 group, there were statistically significant differences in time for file separation between control and all experimental groups. K3 with .04 taper showed higher cyclic fatigue resistance than those of .06 taper.
In the limitation of this study, the cyclic fatigue of the K3 file was influenced by the accumulated internal stress from use until the auto-stop function was activated by the torque-controlled motor. Therefore, clinicians should avoid the reuse of the K3 file that has undergone auto-stops.
Flexibility and fracture properties determine the performance of NiTi rotary instruments. The purpose of this study was to evaluate how geometrical differences between three NiTi instruments affect the deformation and stress distributions under bending and torsional conditions using finite element analysis.
Three NiTi files (ProFile .06 / #30, F3 of ProTaper and ProTaper Universal) were scanned using a Micro-CT. The obtained structural geometries were meshed with linear, eight-noded hexahedral elements. The mechanical behavior (deformation and von Mises equivalent stress) of the three endodontic instruments were analyzed under four bending and rotational conditions using ABAQUS finite element analysis software. The nonlinear mechanical behavior of the NiTi was taken into account.
The U-shaped cross sectional geometry of ProFile showed the highest flexibility of the three file models. The ProTaper, which has a convex triangular cross-section, was the most stiff file model. For the same deflection, the ProTaper required more force to reach the same deflection as the other models, and needed more torque than other models for the same amount of rotation. The highest von Mises stress value was found at the groove area in the cross-section of the ProTaper Universal.
Under torsion, all files showed highest stresses at their groove area. The ProFile showed highest von Mises stress value under the same torsional moment while the ProTaper Universal showed the highest value under same rotational angle.