This study aimed to assess the effect of 38% carbamide peroxide on the microleakage of class V cavities restored with either a silorane-based composite or two methacrylate-based composites.
A total of 96 class V cavities were prepared on the buccal surface of extracted human teeth with both enamel and dentin margins and were randomly assigned into three groups of Filtek P90 (3M-ESPE) + P90 system adhesive (3M-ESPE)(group A), Filtek Z250 (3M-ESPE) + Adper Prompt L-Pop (3M-ESPE)(group B) and Filtek Z350XT (3M-ESPE) + Adper Prompt L-Pop (group C). Half of the teeth were randomly underwent bleaching (38% carbamide peroxide, Day White, Discus Dental, applying for 15 min, twice a day for 14 day) while the remaining half (control) were not bleached. Dye penetration was measured following immersion in basic fuchsine. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney U tests at a level of 0.05.
No significant differences were found between composites in the control groups in enamel (
No significant differences were noted between the bleached and control subgroups of two methacrylate-based composites in enamel or dentin margins. Microleakage of silorane-based composite significantly increased after bleaching.
The purpose of this study was to evaluate the polymerization shrinkage stress among conventional methacrylate-based composite resins and a silorane-based composite resin.
The strain gauge method was used for the determination of polymerization shrinkage strain. Specimens were divided by 3 groups according to various composite materials. Filtek Z-250 (3M ESPE) and Filtek P-60 (3M ESPE) were used as a conventional methacrylate-based composites and Filtek P-90 (3M ESPE) was used as a silorane-based composites. Measurements were recorded at each 1 second for the total of 800 seconds including the periods of light application. The results of polymerization shrinkage stress were statistically analyzed using One way ANOVA and Tukey test (
The polymerization shrinkage stress of a silorane-based composite resin was lower than those of conventional methacrylate-based composite resins (
Within the limitation of this study, silorane-based composites showed lower polymerization shrinkage stress than methacrylate-based composites. We need to investigate more into polymerization shrinkage stress with regard to elastic modulus of silorane-based composites for the precise result.