This study evaluated the effectiveness and safety of an experimental bleaching strip (Medison dental whitening strip, Samsung medical Co., Anyang, Korea) containing 2.9% hydrogen peroxide. Twenty-three volunteers used the bleaching strips for one and a half hour daily for 2 weeks. As control group, the same strips in which hydrogen peroxide was not included were used by 24 volunteers with the same protocol. The shade change (ΔE*, color difference) of twelve anterior teeth was measured using Shade Vision (X-Rite Inc., S.W. Grandville, MI, USA), Chroma Meter (Minolta Co., Ltd. Osaka, Japan) and Vitapan classical shade guide (Vita Zahnfabrik, Germany). The shade change of overall teeth in the experimental group was significantly greater than that in the control group (p < 0.05) and was easily perceivable. The change resulted from the increase of lightness (CIE L* value) and the decrease of redness (CIE a* value) and yellowness (CIE b* value). The shade change of individual tooth was greatest in canine, and smallest in central incisor. The safety of the bleaching strip was also confirmed.
The aim of this study was to evaluate the effect of cavity shape, bond quality of bonding agent and volume of resin composite on shrinkage stress developed at the cavity floor. This was done by measuring the shear bond strength with respect to iris materials (cavity shape; adhesive-coated dentin as a high C-factor and Teflon-coated metal as a low C-factor), bonding agents (bond quality; Scotchbond™ Multi-purpose and Xeno®III) and iris hole diameters (volume; 1 mm or 3 mm in diameter × 1.5 mm in thickness). Ninety-six molars were randomly divided into 8 groups (2 × 2 × 2 experimental setup). In order to simulate a Class I cavity, shear bond strength was measured on the flat occlusal dentin surface with irises. The iris hole was filled with Z250 restorative resin composite in a bulk-filling manner. The data was analyzed using three-way ANOVA and the Tukey test. Fracture mode analysis was also done. When the cavity had high C-factor, good bond quality and large volume, the bond strength decreased significantly. The volume of resin composite restricted within the well-bonded cavity walls is also be suggested to be included in the concept of C-factor, as well as the cavity shape and bond quality. Since the bond quality and volume can exaggerate the effect of cavity shape on the shrinkage stress developed at the resin-dentin bond, resin composites must be filled in a method, which minimizes the volume that can increase the C-factor.