This study tested the hypothesis that cryotherapy duration influences lipopolysaccharide (LPS)-induced inflammation in a rat model.
Six Wistar rats (
Inflammation and hemorrhage varied significantly among the groups (
Cryotherapy administration for 5 minutes reduced the acute inflammation associated with LPS and catheter implantation.
Despite the vast literature on the effects of root canal irrigants on the dentin characteristics, the precise effects of clinically relevant irrigation sequences remain unclear. In this review, we systematically dissect the role of different sequential irrigation approaches that are used in clinical endodontics. Using a systematic search strategy, we attempt to answer the question: ‘Which irrigating sequence has the most deleterious effects on dentin structure and properties?’ The effect of irrigants on the dentin composition and mechanical properties have been reviewed. A wide variety of concentrations, duration and techniques have been employed to characterize the effects of chemicals on dentin properties, thus making it impossible to draw guidelines or recommendations of irrigant sequences to be followed clinically. It was apparent that all the studied irrigation sequences potentially result in some deleterious effects on dentin such as decrease in the flexural strength, microhardness, modulus of elasticity and inorganic content and organic-inorganic ratio of the dentin. However, the literature still lacks comprehensive investigations to compare the deleterious effect of different irrigation sequences, using a wide variety of qualitative and quantitative methods. Such investigations are essential to make clinical recommendations and strategize efforts to minimize chemically-induced damage to dentin characteristics.
It is known that bioactive materials interact with the dentin to undergo biomineralization. The exact role of moisture in this interaction is unknown. Here, we investigate the effects of dentin moisture conditions on the dislocation resistance of two bioactive root canal sealers (MTA Fillapex [Angelus Solucoes Odontologicas] and GuttaFlow BioSeal [Colténe/Whaledent AG]) at 3 weeks and 3 months after obturation.
Mandibular premolars (
Moist dentin resulted in higher bond strength values for both materials at both time points. This was significantly higher than wet and dry dentin for both the sealers at the 3 months (
The dentin moisture conditions had a significant impact on its interaction with the bioactive materials tested. Maintaining moist dentin, but not dry or wet dentin, may be advantageous before the filling root canals with bioactive sealers.
To determine the effect of root canal irrigants on the hydrophobicity and adherence of
Root dentin blocks (
The hydrophobicity and adherence of
The adherence of