The purpose of this study was to evaluate the impact of dentin roughening and the type of composite resin used (either bulk-fill flowable or nanohybrid) on the restoration of non-carious cervical lesions (NCCLs) with an 18-month follow-up period.
This prospective split-mouth study included 36 patients, each with a minimum of 4 NCCLs. For each patient, 4 types of restorations were performed: unroughened dentin with nanohybrid composite, unroughened dentin with bulk-fill flowable composite, roughened dentin with nanohybrid composite, and roughened dentin with bulk-fill flowable composite. A universal bonding agent (Tetric N Bond Universal) was applied in self-etch mode for all groups. The restorations were subsequently evaluated at 6, 12, and 18 months in accordance with the criteria set by the FDI World Dental Federation. Inferential statistics were computed using the Friedman test, with the level of statistical significance established at 0.05.
The 4 groups exhibited no significant differences in relation to fracture and retention, marginal staining, marginal adaptation, postoperative hypersensitivity, or the recurrence of caries at any follow-up point.
Within the limitations of the present study, over an 18-month follow-up period, no significant difference was present in the clinical performance of bulk-fill flowable and nanohybrid composite restorations of non-carious cervical lesions. This held true regardless of whether dentin roughening was performed.
Non-carious cervical lesions (NCCLs) with gingival recession require specific consideration on both aspects of hard and soft tissue lesion. In the restorative aspect, careful finishing and polishing of the restorations prior to mucogingival surgery is the critical factor contributing to success. Regarding surgery, assessment of the configuration of the lesion and the choice of surgical technique are important factors. The precise diagnosis and the choice of the proper treatment procedure should be made on the basis of both restorative and surgical considerations to ensure the successful treatment of NCCLs.
This study was to investigate the influence of combining composite resins with different elastic modulus, and occlusal loading condition on the stress distribution of restored notch-shaped non-carious cervical lesion using 3D finite element (FE) analysis.
The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity was modeled and filled with hybrid, flowable resin or a combination of both. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress.
Results showed that combining method such that apex was restored by material with high elastic modulus and the occlusal and cervical cavosurface margin by small amount of material with low elastic modulus was the most profitable method in the view of tensile stress that was considered as the dominant factor jeopardizing the restoration durability and promoting the lesion progression.