The present study evaluated the pulp response of human mandibular incisors subjected to in-office dental bleaching using gels with medium or high concentrations of hydrogen peroxide (HP).
The following groups were compared: 35% HP (HP35;
The CC and TS of the HP35 group were significantly higher than those of the CONT group (
In-office bleaching therapies using bleaching gels with 20% or 35% HP caused similar pulp damage to the mandibular incisors, characterized by partial necrosis, tertiary dentin deposition, and mild inflammation.
This clinical study evaluated the effect of light activation on the whitening efficacy and safety of in-office bleaching system containing 15% hydrogen peroxide gel.
Thirty-three volunteers were randomly treated with (n = 17, experimental group) or without light activation (n = 16, control group), using Zoom2 white gel (15% H2O2, Discus Dental) for a total treatment time of 45 min. Visual and instrumental color measurements were obtained using Vitapan Classical shade guide and Shadepilot (DeguDent) at screening test, after bleaching, and 1 month and 3 month after bleaching. Data were analyzed using
Zoom2 white gel produced significant shade changes in both experimental and control group when pre-treatment shade was compared with that after bleaching. However, shade difference between two groups was not statistically significant (
The application of light activation with Zoom2 white gel system neither achieved additional whitening effects nor showed more detrimental influences.
This study investigated the clinical effectiveness and safety of sealed bleaching compared to conventional in-office bleaching using a randomized clinical trial of split arch design. Ten participants received a chairside bleaching treatment on the upper anterior teeth, and each side was randomly designated as sealed or control side. A mixture of Brite powder (PacDent, Walnut, USA), 3% hydrogen peroxide and carbamide peroxide (KoolWhite, PacDent, Walnut, USA) were used as bleaching agent. The control side was unwrapped and the experimental side was covered with a linear low density polyethylene (LLDPE) wrap for sealed bleaching. The bleaching gel was light activated for 1 hour. The tooth shades were evaluated before treatment, after treatment, and at one week check up by means of a visual shade (VS) assessment using a value oriented shade guide and a computer assisted shade assessment using a spectrophotometer (SP). The data were analyzed by paired t-test.
In the control and sealed groups, the visual shade scores after bleaching treatment and at check up showed statistically significant difference from the preoperative shade scores (p < .05). The shade scores of the sealed group were significantly lighter than the control immediately after bleaching and at the check-up appointment (p < 0.05). Compared to prebleaching status, the ΔE values at post-bleaching condition were 4.35 ± 1.38 and 5.08 ± 1.34 for the control and sealed groups, respectively. The ΔE values at check up were 3.73 ± 1.95 and 4.38 ± 2.08 for the control and sealed groups. ΔE values were greater for the sealed group both after bleaching (p < .05) and at check up (p < .05).
In conclusion, both ΔE and shade score changes were greater for the sealed bleaching group than the conventional bleaching group, effectively demonstrating the improvement of effectiveness through sealing.