This study aims to compare the cyclic fatigue resistance of VDW.ROTATE, TruNatomy, 2Shape, and HyFlex CM nickel-titanium (NiTi) rotary files at body temperature.
In total, 80 VDW.ROTATE (25/0.04), TruNatomy (26/0.04), 2Shape (25/0.04), and HyFlex CM (25/0.04) NiTi rotary files (
There were significant differences in the cyclic fatigue resistance among the groups (
The VDW.ROTATE files had the highest cyclic fatigue resistance, and the TruNatomy and 2Shape files had the lowest cyclic fatigue resistance in artificial canals at body temperature.
The aim of this study was to investigate the effect of glide path preparation with PathFile and ProGlider nickel-titanium (NiTi) files on the cyclic fatigue resistance of WaveOne NiTi files.
Forty-four WaveOne Primary files were used and divided into four groups (
The highest number of cycles to failure was found in the control group, and the lowest numbers were found in the 1 WaveOne group and the PF+WaveOne group. Significant differences were found among the 1 WaveOne, PF+WaveOne, and control groups (
Glide path preparation with NiTi rotary files did not affect the cyclic fatigue resistance of WaveOne Primary files used on acrylic blocks.
To examine the surface topography of intact WaveOne (WO; Dentsply Sirona Endodontics) and WaveOne Gold (WOG; Dentsply Sirona Endodontics) nickel-titanium rotary files and to evaluate the presence of alterations to the surface topography after root canal preparations of severely curved root canals in molar teeth.
Forty-eight severely curved canals of extracted molar teeth were divided into 2 groups (
The surface roughness values of WO and WOG files significantly changed after use in root canals (
Using WO and WOG Primary files in 3 root canals affected the surface topography of the files. After being used in root canals, the WOG files showed a higher level of surface porosity value than the WO files.
To determine the incidence of crack formation and propagation in apical root dentin after retreatment procedures performed using ProTaper Universal Retreatment (PTR), Mtwo-R, ProTaper Next (PTN), and Twisted File Adaptive (TFA) systems.
The study consisted of 120 extracted mandibular premolars. One millimeter from the apex of each tooth was ground perpendicular to the long axis of the tooth, and the apical surface was polished. Twenty teeth served as the negative control group. One hundred teeth were prepared, obturated, and then divided into 5 retreatment groups. The retreatment procedures were performed using the following files: PTR, Mtwo-R, PTN, TFA, and hand files. After filling material removal, apical enlargement was done using apical size 0.50 mm ProTaper Universal (PTU), Mtwo, PTN, TFA, and hand files. Digital images of the apical root surfaces were recorded before preparation, after preparation, after obturation, after filling removal, and after apical enlargement using a stereomicroscope. The images were then inspected for the presence of new apical cracks and crack propagation. Data were analyzed with χ2 tests using SPSS 21.0 software.
New cracks and crack propagation occurred in all the experimental groups during the retreatment process. Nickel-titanium rotary file systems caused significantly more apical crack formation and propagation than the hand files. The PTU system caused significantly more apical cracks than the other groups after the apical enlargement stage.
This study showed that retreatment procedures and apical enlargement after the use of retreatment files can cause crack formation and propagation in apical dentin.
It was aimed to compare the cyclic fatigue resistances of ProTaper Universal (PTU), ProTaper Next (PTN), and ProTaper Gold (PTG) and the effects of sterilization by autoclave on the cyclic fatigue life of nickel-titanium (NiTi) instruments.
Eighty PTU, 80 PTN, and 80 PTG were included to the present study. Files were tested in a simulated canal. Each brand of the NiTi files were divided into 4 subgroups: group 1, as received condition; group 2, pre-sterilized instruments exposed to 10 times sterilization by autoclave; group 3, instruments tested were sterilized after being exposed to 25%, 50%, and 75% of the mean cycles to failure, then cycled fatigue test was performed; group 4, instruments exposed to the same experiment with group 3 without sterilization. The number of cycles to failure (NCF) was calculated. The data was statistically analyzed by using one-way analysis of variance and
PTG showed significantly higher NCF than PTU and PTN in group 1 (
PTG instrument made of new gold alloy was more resistant to fatigue failure than PTN and PTU. Autoclaving increased the cyclic fatigue resistances of PTN and PTG.
It was aimed to compare the cyclic fatigue resistances of ProGlider (PG), One G (OG), and HyFlex EDM (HEDM) nickel titanium glide path files in single- and double-curved artificial canals.
40 PG (16/0.02), 40 OG (14/0.03), and 40 HEDM (10/0.05) single-file glide path files were used in the present study. Sixty files were subjected to cyclic fatigue test by using double-curved canals and 60 files by using single-curved canal (
In all of the groups, NCF values were significantly lower in double-curved canals when compared to single-curved canals (
Within the limitations of this study, HEDM glide path files were found to have the highest cyclic fatigue resistance in both of single- and double-curved canals.
The aim of this study was to evaluate the cyclic fatigue resistance of the ProTaper Universal D1 file (Dentsply Maillefer) under continuous and adaptive motion.
Forty ProTaper Universal D1 files were included in this study. The cyclic fatigue tests were performed using a dynamic cyclic fatigue testing device, which had an artificial stainless steel canal with a 60° angle of curvature and a 5 mm radius of curvature. The files were randomly divided into two groups (Group 1, Rotary motion; Group 2, Adaptive motion). The time to failure of the files were recorded in seconds. The number of cycles to failure (NCF) was calculated for each group. The data were statistically analyzed using Student's
The cyclic fatigue resistance of the adaptive motion group was significantly higher than the rotary motion group (
Within the limitations of the present study, the ‘Adaptive motion’ significantly increased the resistance of the ProTaper Universal D1 file to cyclic facture.