Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Search

Page Path
HOME > Search
5 "Compressive strength"
Filter
Filter
Article category
Keywords
Publication year
Authors
Research Articles
Comparative analysis of bond strength to root dentin and compression of bioceramic cements used in regenerative endodontic procedures
Maykely Naara Morais Rodrigues, Kely Firmino Bruno, Ana Helena Gonçalves de Alencar, Julyana Dumas Santos Silva, Patrícia Correia de Siqueira, Daniel de Almeida Decurcio, Carlos Estrela
Restor Dent Endod 2021;46(4):e59.   Published online November 9, 2021
DOI: https://doi.org/10.5395/rde.2021.46.e59
AbstractAbstract PDFPubReaderePub
Objectives

This study compared the Biodentine, MTA Repair HP, and Bio-C Repair bioceramics in terms of bond strength to dentin, failure mode, and compression.

Materials and Methods

Fifty-four slices obtained from the cervical third of 18 single-rooted human mandibular premolars were randomly distributed (n = 18). After insertion of the bioceramic materials, the push-out test was performed. The failure mode was analyzed using stereomicroscopy. Another set of cylindrically-shaped bioceramic samples (n = 10) was prepared for compressive strength testing. The normality of data distribution was analyzed using the Shapiro-Wilk test. The Kruskal-Wallis and Friedman tests were used for the push-out test data, while compressive strength was analyzed with analysis of variance and the Tukey test, considering a significance level of 0.05.

Results

Biodentine presented a higher median bond strength value (14.79 MPa) than MTA Repair HP (8.84 MPa) and Bio-C Repair (3.48 MPa), with a significant difference only between Biodentine and Bio-C Repair. In the Biodentine group, the most frequent failure mode was mixed (61%), while in the MTA Repair HP and Bio-C Repair groups, it was adhesive (94% and 72%, respectively). Biodentine showed greater resistance to compression (29.59 ± 8.47 MPa) than MTA Repair HP (18.68 ± 7.40 MPa) and Bio-C Repair (19.96 ± 3.96 MPa) (p < 0.05).

Conclusions

Biodentine showed greater compressive strength than MTA Repair HP and Bio-C Repair, and greater bond strength than Bio-C Repair. The most frequent failure mode of Biodentine was mixed, while that of MTA Repair HP and Bio-C Repair was adhesive.

Citations

Citations to this article as recorded by  
  • Comparación de la resistencia compresiva entre el Agregado Trióxido Mineral y BiodentineTM en perforaciones de furca de molares inferiores permanentes
    Jheymy Gerardo Huatuco-Granda, John Paul Torres-Navarro, Rosa Josefina Roncal-Espinoza
    Revista Facultad de Odontología.2024;[Epub]     CrossRef
  • Effects of different calcium-silicate based materials on fracture resistance of immature permanent teeth with replacement root resorption and osteoclastogenesis
    Gabriela Leite de Souza, Gabrielle Alves Nunes Freitas, Maria Tereza Hordones Ribeiro, Nelly Xiomara Alvarado Lemus, Carlos José Soares, Camilla Christian Gomes Moura
    Restorative Dentistry & Endodontics.2023;[Epub]     CrossRef
  • Evaluation the Marginal Adaptation for the Bio C Repair and Other Root end Filling Material by Using Scanning Electron Microscope (A Comparative In Vitro Study)
    Fatimah HAMADHİ, Zainab M.
    Cumhuriyet Dental Journal.2023; 26(3): 261.     CrossRef
  • Dentin Bond Strength of Calcium Silicate-Based Materials: A Systematic Review of In Vitro Studies
    Natalia Radulica, José Luis Sanz, Adrián Lozano
    Applied Sciences.2023; 14(1): 104.     CrossRef
  • Evaluation Of The Push-out Bond Strength Of The Bio-C Repair And Compare It With The Mineral Trioxide Aggregate And Amalgam When Used As Root-end Filling Material
    Fatimah R. Hammadi, Zainab M Abdul-Ameer
    Dental Hypotheses.2023; 14(2): 62.     CrossRef
  • Effect of different root canal irrigants on push-out bond strength of two novel root-end filling materials
    Nada Omar, Rasha M. Abdelraouf, Tamer M. Hamdy
    BMC Oral Health.2023;[Epub]     CrossRef
  • Effect of irrigation systems on the bond strength of calcium-silicate-based cement used as pulp barrier in regenerative endodontic treatment
    Cihan Hascizmeci, Burak Buldur
    Journal of Adhesion Science and Technology.2023; 37(23): 3393.     CrossRef
  • 358 View
  • 20 Download
  • 3 Web of Science
  • 7 Crossref
Close layer
Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials
Young-Eun Jang, Bin-Na Lee, Jeong-Tae Koh, Yeong-Joon Park, Nam-Eok Joo, Hoon-Sang Chang, In-Nam Hwang, Won-Mann Oh, Yun-Chan Hwang
Restor Dent Endod 2014;39(2):89-94.   Published online March 21, 2014
DOI: https://doi.org/10.5395/rde.2014.39.2.89
AbstractAbstract PDFPubReaderePub
Objectives

The aim of this study was to evaluate the cytotoxicity, setting time and compressive strength of MTA and two novel tricalcium silicate-based endodontic materials, Bioaggregate (BA) and Biodentine (BD).

Materials and Methods

Cytotoxicity was evaluated by using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino)carbonyl)-2H-tetrazolium hydroxide (XTT) assay. Measurements of 9 heavy metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) were performed by inductively coupled plasma-mass spectrometry (ICP-MS) of leachates obtained by soaking the materials in distilled water. Setting time and compressive strength tests were performed following ISO requirements.

Results

BA had comparable cell viability to MTA, whereas the cell viability of BD was significantly lower than that of MTA. The ICP-MS analysis revealed that BD released significantly higher amount of 5 heavy metals (arsenic, copper, iron, manganese, and zinc) than MTA and BA. The setting time of BD was significantly shorter than that of MTA and BA, and the compressive strength of BA was significantly lower than that of MTA and BD.

Conclusions

BA and BD were biocompatible, and they did not show any cytotoxic effects on human periodontal ligament fibroblasts. BA showed comparable cytotoxicity to MTA but inferior physical properties. BD had somewhat higher cytotoxicity but superior physical properties than MTA.

Citations

Citations to this article as recorded by  
  • Evaluation of the physical properties of bromelain-modified biodentine for direct pulp capping
    Paridhi Agrawal, Manoj Chandak, Aditya Patel, Jay Bhopatkar
    BMC Oral Health.2024;[Epub]     CrossRef
  • Evaluation of bioactivity, biocompatibility, and antibacterial properties of tricalcium silicate bone cement modified with wollastonite/ fluorapatite glass and glass-ceramic
    H.K. Abd El-Hamid, A.M. Fayad, R.L. Elwan
    Ceramics International.2024; 50(14): 25322.     CrossRef
  • Evaluation of the chemical, physical, and biological properties of a newly developed bioceramic cement derived from cockle shells: an in vitro study
    Monthip Wannakajeepiboon, Chankhrit Sathorn, Chatvadee Kornsuthisopon, Busayarat Santiwong, Thanakorn Wasanapiarnpong, Pairoj Linsuwanont
    BMC Oral Health.2023;[Epub]     CrossRef
  • Strength of a cement-based dental material: Early age testing and first micromechanical modeling at mature age
    Petr Dohnalík, Christian Hellmich, Gilles Richard, Bernhard L. A. Pichler
    Frontiers in Bioengineering and Biotechnology.2023;[Epub]     CrossRef
  • Calcium silicate and calcium aluminate cements for dentistry reviewed
    Carolyn Primus, James L. Gutmann, Franklin R. Tay, Anna B. Fuks
    Journal of the American Ceramic Society.2022; 105(3): 1841.     CrossRef
  • Biomimetic Approaches in Clinical Endodontics
    Naresh Kumar, Nazrah Maher, Faiza Amin, Hani Ghabbani, Muhammad Sohail Zafar, Francisco Javier Rodríguez-Lozano, Ricardo E. Oñate-Sánchez
    Biomimetics.2022; 7(4): 229.     CrossRef
  • Effect of different manipulations on the physical, chemical and microstructural characteristics of Biodentine
    Mariana Domingos Pires, Joana Cordeiro, Isabel Vasconcelos, Mariana Alves, Sérgio André Quaresma, António Ginjeira, Josette Camilleri
    Dental Materials.2021; 37(7): e399.     CrossRef
  • Minimal Intervention in Dentistry: A Literature Review on Biodentine as a Bioactive Pulp Capping Material
    Naji Ziad Arandi, Mohammad Thabet, Mona Abbassy
    BioMed Research International.2021;[Epub]     CrossRef
  • Chitosan-Based Accelerated Portland Cement Promotes Dentinogenic/Osteogenic Differentiation and Mineralization Activity of SHED
    Hasan Subhi, Adam Husein, Dasmawati Mohamad, Nik Rozainah Nik Abdul Ghani, Asma-Abdullah Nurul
    Polymers.2021; 13(19): 3358.     CrossRef
  • Material Pulp Cells and Tissue Interactions
    Nastaran Meschi, Biraj Patel, Nikita B. Ruparel
    Journal of Endodontics.2020; 46(9): S150.     CrossRef
  • Biological Effects of Tricalcium Silicate Nanoparticle-Containing Cement on Stem Cells from Human Exfoliated Deciduous Teeth
    Yoonsun Jung, Ji-Young Yoon, Kapil Dev Patel, Lan Ma, Hae-Hyoung Lee, Jongbin Kim, Jung-Hwan Lee, Jisun Shin
    Nanomaterials.2020; 10(7): 1373.     CrossRef
  • Physicochemical, mechanical and cytotoxicity evaluation of chitosan-based accelerated portland cement
    Hasan Subhi, Adam Husein, Dasmawati Mohamad, Asma-Abdullah Nurul
    Journal of Materials Research and Technology.2020; 9(5): 11574.     CrossRef
  • Tricalcium silicate cements: osteogenic and angiogenic responses of human bone marrow stem cells
    Mohamed R. W. Ali, Manal Mustafa, Asgeir Bårdsen, Athanasia Bletsa
    European Journal of Oral Sciences.2019; 127(3): 261.     CrossRef
  • Bioactive tri/dicalcium silicate cements for treatment of pulpal and periapical tissues
    Carolyn M. Primus, Franklin R. Tay, Li-na Niu
    Acta Biomaterialia.2019; 96: 35.     CrossRef
  • Effect of phytic acid on the setting times and tensile strengths of calcium silicate‐based cements
    Ozgur Uyanik, Emre Nagas, Selen Kucukkaya Eren, Zafer C. Cehreli, Pekka K. Vallittu, Lippo V.J. Lassila
    Australian Endodontic Journal.2019; 45(2): 241.     CrossRef
  • Effects of four novel root-end filling materials on the viability of periodontal ligament fibroblasts
    Makbule Bilge Akbulut, Pembegul Uyar Arpaci, Ayce Unverdi Eldeniz
    Restorative Dentistry & Endodontics.2018;[Epub]     CrossRef
  • Biodentine™ material characteristics and clinical applications: a 3 year literature review and update
    S. Rajasekharan, L. C. Martens, R. G. E. C. Cauwels, R. P. Anthonappa
    European Archives of Paediatric Dentistry.2018; 19(1): 1.     CrossRef
  • Root perforations: a review of diagnosis, prognosis and materials
    Carlos Estrela, Daniel de Almeida Decurcio, Giampiero Rossi-Fedele, Julio Almeida Silva, Orlando Aguirre Guedes, Álvaro Henrique Borges
    Brazilian Oral Research.2018;[Epub]     CrossRef
  • Effects of chelating agent and acids on Biodentine
    V Ballal, JN Marques, CN Campos, CO Lima, RA Simão, M Prado
    Australian Dental Journal.2018; 63(2): 170.     CrossRef
  • Biological interactions of a calcium silicate based cement (Biodentine™) with Stem Cells from Human Exfoliated Deciduous teeth
    Eirini Athanasiadou, Maria Paschalidou, Anna Theocharidou, Nikolaos Kontoudakis, Konstantinos Arapostathis, Athina Bakopoulou
    Dental Materials.2018; 34(12): 1797.     CrossRef
  • Retention of BioAggregate and MTA as coronal plugs after intracanal medication for regenerative endodontic procedures: an ex vivo study
    Suzan Abdul Wanees Amin, Shaimaa Ismail Gawdat
    Restorative Dentistry & Endodontics.2018;[Epub]     CrossRef
  • Management of Dens Invaginatus Type II Associated with Immature Apex and Large Periradicular Lesion Using Platelet-rich Fibrin and Biodentine
    Shruti Goel, Ruchika Roongta Nawal, Sangeeta Talwar
    Journal of Endodontics.2017; 43(10): 1750.     CrossRef
  • Brain aluminium accumulation and oxidative stress in the presence of calcium silicate dental cements
    K Demirkaya, B Can Demirdöğen, Z Öncel Torun, O Erdem, E Çırak, YM Tunca
    Human & Experimental Toxicology.2017; 36(10): 1071.     CrossRef
  • Calcium silicate‐based cements: composition, properties, and clinical applications
    Alaa E. Dawood, Peter Parashos, Rebecca H.K. Wong, Eric C. Reynolds, David J. Manton
    Journal of Investigative and Clinical Dentistry.2017;[Epub]     CrossRef
  • Biological response of commercially available different tricalcium silicate-based cements and pozzolan cement
    Serhat Köseoğlu, Tuğba Pekbağryank, Ebru Kucukyilmaz, Mehmet Sağlam, Sukru Enhos, Ayşe Akgün
    Microscopy Research and Technique.2017; 80(9): 994.     CrossRef
  • Modified tricalcium silicate cement formulations with added zirconium oxide
    Xin Li, Kumiko Yoshihara, Jan De Munck, Stevan Cokic, Pong Pongprueksa, Eveline Putzeys, Mariano Pedano, Zhi Chen, Kirsten Van Landuyt, Bart Van Meerbeek
    Clinical Oral Investigations.2017; 21(3): 895.     CrossRef
  • Cytotoxic effects of mineral trioxide aggregate, calcium enrichedmixture cement, Biodentine and octacalcium pohosphate onhuman gingival fibroblasts
    Eshagh A. Saberi, Narges Farhadmollashahi, Faroogh Ghotbi, Hamed Karkeabadi, Roholla Havaei
    Journal of Dental Research, Dental Clinics, Dental Prospects.2016; 10(2): 75.     CrossRef
  • The effect of working time on the displacement of Biodentine™ beneath prefabricated stainless steel crown: a laboratory study
    Alaa E. Dawood, David J. Manton, Peter Parashos, Rebecca H. K. Wong
    Journal of Investigative and Clinical Dentistry.2016; 7(4): 391.     CrossRef
  • Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry
    Jia Kim, Young-Sang Song, Kyung-San Min, Sun-Hun Kim, Jeong-Tae Koh, Bin-Na Lee, Hoon-Sang Chang, In-Nam Hwang, Won-Mann Oh, Yun-Chan Hwang
    Restorative Dentistry & Endodontics.2016; 41(1): 29.     CrossRef
  • 245 View
  • 3 Download
  • 29 Crossref
Close layer
Evaluation of the effect of blood contamination on the compressive strength of MTA modified with hydration accelerators
Kaveh Oloomi, Eshaghali Saberi, Hadi Mokhtari, Hamid Reza Mokhtari Zonouzi, Ali Nosrat, Mohammad Hossein Nekoofar, Paul Michael Howell Dummer
Restor Dent Endod 2013;38(3):128-133.   Published online August 23, 2013
DOI: https://doi.org/10.5395/rde.2013.38.3.128
AbstractAbstract PDFPubReaderePub
Objectives

This study was performed to evaluate the effect of blood contamination on the compressive strength (CS) of Root MTA (RMTA) modified with Calcium chloride (CaCl2) and Disodium hydrogen phosphate (Na2HPO4) as setting accelerators over time.

Materials and Methods

A total of 110 cylindrical specimens of RMTA were divided into 6 experimental groups as follows: Group1, RMTA; Group 2, RMTA modified with CaCl2 (RMTA-C); Group 3, RMTA modified with Na2HPO4 (RMTA-N); Group 4, RMTA contaminated with blood; Group 5, RMTA-C contaminated with blood; Group 6, RMTA-N contaminated with blood. The CS of specimens in all groups was evaluated after 3 hr, 24 hr, and 1 wk. In the modified groups (groups 2, 3, 5, and 6) the CS of five specimens per group was also evaluated after 1 hr.

Results

Blood contamination significantly reduced the CS of all materials at all time intervals (p < 0.05). After 3 hr, the CS of specimens in the RMTA groups (with and without blood contamination) was significantly lower than those in the RMTA-C and RMTA-N groups (p < 0.05). The CS values were not significantly different at the other time intervals. In all groups, the CS of specimens significantly increased over time (p < 0.05).

Conclusions

Blood contamination decreased the CS of both original and accelerated RMTA.

Citations

Citations to this article as recorded by  
  • The effect of three additives on properties of mineral trioxide aggregate cements: a systematic review and meta-analysis of in vitro studies
    Behnam Bolhari, Faranak Noori, Hadi Assadian, Amir Raee, Sholeh Ghabraei, Ahmad-Reza Shamshiri, Artak Heboyan
    BMC Oral Health.2024;[Epub]     CrossRef
  • Push‐out bond strength of the calcium silicate‐based endodontic cements in the presence of blood: A systematic review and meta‐analysis of in vitro studies
    Mahdieh Alipour, Leili Faraji Gavgani, Negin Ghasemi
    Clinical and Experimental Dental Research.2022; 8(2): 571.     CrossRef
  • Effect of bioactive glass addition on the physical properties of mineral trioxide aggregate
    Jei Kim, Hyun-Jung Kim, Seok Woo Chang, Soram Oh, Sun-Young Kim, Kyoung-Kyu Choi, Duck-Su Kim, Ji-Hyun Jang
    Biomaterials Research.2021;[Epub]     CrossRef
  • Effect of the addition of nanoparticles of CaCO3 and different water‐to‐powder ratios on the physicochemical properties of white Portland cement
    Cleonice da Silveira Teixeira, Jessica Coelho Wasielewsky, Giovanna Slongo dos Santos, Anarela Bernardi, Eduardo Antunes Bortoluzzi, Lucas da Fonseca Roberti Garcia
    Microscopy Research and Technique.2021; 84(4): 592.     CrossRef
  • Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal model
    P. Schembri Wismayer, C. Y. K. Lung, F. Rappa, F. Cappello, J. Camilleri
    Scientific Reports.2016;[Epub]     CrossRef
  • Effect of the plant-based hemostatic agent Ankaferd Blood Stopper® on the biocompatibility of mineral trioxide aggregate
    Muzaffer Emir Dinçol, Hakan Ozbas, Bulent Yılmaz, Handan Ersev, Selcuk Gokyay, Vakur Olgac
    BMC Oral Health.2016;[Epub]     CrossRef
  • Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions
    Noushin Shokouhinejad, Leila Jafargholizadeh, Mehrfam Khoshkhounejad, Mohammad Hossein Nekoofar, Maryam Raoof
    Restorative Dentistry & Endodontics.2014; 39(4): 253.     CrossRef
  • Surgical management of a failed internal root resorption treatment: a histological and clinical report
    Saeed Asgary, Mohammad Jafar Eghbal, Leili Mehrdad, Sanam Kheirieh, Ali Nosrat
    Restorative Dentistry & Endodontics.2014; 39(2): 137.     CrossRef
  • 203 View
  • 1 Download
  • 8 Crossref
Close layer
Basic Research
Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement
Yu-Na Jeong, So-Young Yang, Bum-Jun Park, Yeong-Joon Park, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
J Korean Acad Conserv Dent 2010;35(5):344-352.   Published online September 30, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.5.344
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to determine the setting time, compressive strength, solubility, and pH of mineral trioxide aggregate (MTA) mixed with glass ionomer cement (GIC) and to compare these properties with those of MTA, GIC, IRM, and SuperEBA.

Materials and Methods

Setting time, compressive strength, and solubility were determined according to the ISO 9917 or 6876 method. The pH of the test materials was determined using a pH meter with specified electrode for solid specimen.

Results

The setting time of MTA mixed with GIC was significantly shorter than that of MTA. Compressive strength of MTA mixed with GIC was significantly lower than that of other materials at all time points for 7 days. Solubility of 1 : 1 and 2 : 1 specimen from MTA mixed with GIC was significantly higher than that of other materials. Solubility of 1 : 2 specimen was similar to that of MTA. The pH of MTA mixed with GIC was 2-4 immediately after mixing and increased to 5-7 after 1 day.

Conclusions

The setting time of MTA mixed with GIC was improved compared with MTA. However, other properties such as compressive strength and pH proved to be inferior to those of MTA. To be clinically feasible, further investigation is necessary to find the proper mixing ratio in order to improve the drawbacks of MTA without impairing the pre-existing advantages and to assess the biocompatibility.

Citations

Citations to this article as recorded by  
  • Comparison of Setting Time, Compressive Strength, Solubility, and pH of Four Kinds of MTA
    Jing-Ling Che, Jae-Hwan Kim, Seon-Mi Kim, Nam-ki Choi, Hyun-Joo Moon, Moon-Jin Hwang, Ho-Jun Song, Yeong-Joon Park
    Korean Journal of Dental Materials.2016; 43(1): 61.     CrossRef
  • Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?
    Maria Fernanda Costa Cabral, Roberto Luiz de Menezes Martinho, Manoel Valcácio Guedes-Neto, Maria Augusta Bessa Rebelo, Danielson Guedes Pontes, Flávia Cohen-Carneiro
    Restorative Dentistry & Endodontics.2015; 40(3): 209.     CrossRef
  • Synthesis and Properties of a New Dental Material Based on Nano‐Structured Highly Active Calcium Silicates and Calcium Carbonates
    Vukoman Jokanović, Božana Čolović, Miodrag Mitrić, Dejan Marković, Bojana Ćetenović
    International Journal of Applied Ceramic Technology.2014; 11(1): 57.     CrossRef
  • Evaluation of the effect of blood contamination on the compressive strength of MTA modified with hydration accelerators
    Kaveh Oloomi, Eshaghali Saberi, Hadi Mokhtari, Hamid Reza Mokhtari Zonouzi, Ali Nosrat, Mohammad Hossein Nekoofar, Paul Michael Howell Dummer
    Restorative Dentistry & Endodontics.2013; 38(3): 128.     CrossRef
  • Endodontic management of a maxillary lateral incisor with dens invaginatus and external root irregularity using cone-beam computed tomography
    Young-Jun Lim, Sook-Hyun Nam, Sung-Ho Jung, Dong-Ryul Shin, Su-Jung Shin, Kyung-San Min
    Restorative Dentistry & Endodontics.2012; 37(1): 50.     CrossRef
  • 182 View
  • 1 Download
  • 5 Crossref
Close layer
Original Article
Mechanical properties and microleakage of composite resin materials cured by variable light intensities
Seung-Ryul Han, Kyung-San Min, Dong-Hoon Shin
J Korean Acad Conserv Dent 2003;28(2):134-145.   Published online March 31, 2003
DOI: https://doi.org/10.5395/JKACD.2003.28.2.134
AbstractAbstract PDFPubReaderePub

Mechanical properties and microleakage of two composites [conventional hybrid type DenFil (VERICOM Co., Anyang, Korea) / micro matrix hybrid type Esthet X (Dentsply Caulk, Milford, DE, U.S.A.)] were evaluated to assess whether variable light intensity curing is better than conventional curing technique.

Curing was done for 40 seconds in two ways of 2 step soft-start technique and 5 step ramping technique. Three kinds of light intensities of 50, 100, 200 mW/cm2 were initially used for 10, 20, 30 seconds each and the maximum intensity of 600 mW/cm2 was used for the rest of curing time in a soft-start curing technique. In a ramping technique, curing was done with the same initial intensities and the light intensity was increased 5 times with the same rate to the maximum intensity of 600 mW/cm2.

After determining conditions that showed no different mechanical properties with conventional technique, Esthet X composite was filled in a class V cavity, which dimension was 4×3×1.5 mm and cured under those conditions.

Microleakage was evaluated in two ways of dye penetration and maximum gap estimation through SEM observation. ANOVA and Spearman's rho test were used to confirm any statistical significance among groups.

The results were as follows:

Several curing conditions of variable light intensities resulted in the similar mechanical properties with a conventional continuous curing technique, except conditions that start curing with an initial light intensity of 50 mW/cm2,

Conventional and ramping techniques were better than soft-start technique in mechanical properties of microhardness and compressive strength.

Soft-start group that started curing with an initial light intensity of 100 mW/cm2 for 10 seconds showed the least dye penetration. Soft-start group that started curing with an initial light intensity of 200 mW/cm2 for 10 seconds showed the smallest marginal gap, if there was no difference among groups.

Soft-start technique resulted in better dye-proof margin than conventional technique (p=0.014) and ramping technique(p=0.002).

There was a very low relationship(p=0.157) between the methods of dye penetration and marginal gap determination through SEM evaluation.

From the results of this study, it was revealed that ramping technique would be better than conventional technique in mechanical properties, however, soft-start technique might be better than conventional one in microleakage.

It was concluded that much endeavor should be made to find out the curing conditions, which have advantages of both aspects or to solve these kinds of problems through a novel idea of polymerization.

  • 142 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP