Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Author index

Page Path
HOME > Browse articles > Author index
Search
Hong-Ran Choi 1 Article
Pulp response of mineral trioxide aggregate, calcium sulfate or calcium hydroxide
Young-Ran Yun, In-Seok Yang, Yun-Chan Hwang, In-Nam Hwang, Hong-Ran Choi, Suk-Ja Yoon, Sun-Hun Kim, Won-Mann Oh
J Korean Acad Conserv Dent 2007;32(2):95-101.   Published online March 31, 2007
DOI: https://doi.org/10.5395/JKACD.2007.32.2.095
AbstractAbstract PDFPubReaderePub

This study was performed to verify the possibility of MTA and calcium sulfate as a pulp capping agent through comparing the dental pulp response in dogs after capping with MTA, calcium sulfate, and calcium hydroxide.

24 teeth of 2 dogs, 8 month old, were used in this study.

Under general anesthesia, cervical cavities were prepared and pulp was exposed with sterilized #2 round bur in a high speed handpiece.

MTA, calcium hydroxide, and calcium sulfate were applied on the exposed pulp. Then the coronal openings were sealed with IRM and light-cured composite.

Two months after treatment, the animals were sacrificed. The extracted teeth were fixed in 10% neutral-buffered formalin solution and were decalcified in formic acid-sodium citrate. They were prepared for histological examination in the usual manner. The sections were stained with haematoxylin and eosin.

In MTA group, a hard tissue bridges formation and newly formed odontoblasts layer was observed. There was no sign of pulp inflammatory reaction in pulp tissue.

In calcium hydroxide group, there was no odontoblast layer below the dentin bridge. In pulpal tissue, chronic inflammatory reaction with variable intensity and extension occurred in all samples.

In calcium sulfate group, newly formed odontoblast layer was observed below the bridge. Mild chronic inflammation with a few neutrophil infiltrations was observed on pulp tissue.

These results suggest that MTA is more biocompatible on pulp tissue than calcium hydroxide or calcium sulfate.

Citations

Citations to this article as recorded by  
  • Effects of the exposure site on histological pulpal responses after direct capping with 2 calcium-silicate based cements in a rat model
    Panruethai Trongkij, Supachai Sutimuntanakul, Puangwan Lapthanasupkul, Chitpol Chaimanakarn, Rebecca Wong, Danuchit Banomyong
    Restorative Dentistry & Endodontics.2018;[Epub]     CrossRef
  • Conservative approach of a symptomatic carious immature permanent tooth using a tricalcium silicate cement (Biodentine): a case report
    Cyril Villat, Brigitte Grosgogeat, Dominique Seux, Pierre Farge
    Restorative Dentistry & Endodontics.2013; 38(4): 258.     CrossRef
  • Comparison of gene expression profiles of human dental pulp cells treated with mineral trioxide aggregate and calcium hydroxide
    Yong-Beom Kim, Won-Jun Shon, Woocheol Lee, Kee-Yeon Kum, Seung-Ho Baek, Kwang-Shik Bae
    Journal of Korean Academy of Conservative Dentistry.2011; 36(5): 397.     CrossRef
  • Pulp response of beagle dog to direct pulp capping materials: Histological study
    Ji-Hyun Bae, Young-Gyun Kim, Pil-Young Yoon, Byeong-Hoon Cho, Yong-Hoon Choi
    Journal of Korean Academy of Conservative Dentistry.2010; 35(1): 5.     CrossRef
  • Gene expression profiling in human dental pulp cells treated with mineral trioxide aggregate
    Yong-Beom Kim, Won-Jun Shon, WooCheol Lee, Kee-Yeon Kum, Seung-Ho Baek, Kwang-Shik Bae
    Journal of Korean Academy of Conservative Dentistry.2010; 35(3): 152.     CrossRef
  • Biocompatibility of experimental mixture of mineral trioxide aggregate and glass ionomer cement
    Min-Jae Oh, Yu-Na Jeong, In-Ho Bae, So-Young Yang, Bum-Jun Park, Jeong-Tae Koh, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
    Journal of Korean Academy of Conservative Dentistry.2010; 35(5): 359.     CrossRef
  • Biocompatibility of bioaggregate cement on human pulp and periodontal ligament (PDL) derived cells
    Choo-Ryung Chung, Euiseong Kim, Su-Jung Shin
    Journal of Korean Academy of Conservative Dentistry.2010; 35(6): 473.     CrossRef
  • Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement
    Yu-Na Jeong, So-Young Yang, Bum-Jun Park, Yeong-Joon Park, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
    Journal of Korean Academy of Conservative Dentistry.2010; 35(5): 344.     CrossRef
  • The effect of several root-end filling materials on MG63 osteoblast-like cells
    Jeong-Ho Lee, Won-Jun Shon, WooCheol Lee, Seung-Ho Baek
    Journal of Korean Academy of Conservative Dentistry.2010; 35(3): 222.     CrossRef
  • Effects of condensation techniques and canal sizes on the microleakage of orthograde MTA apical plug in simulated canals
    Deuk-Lim Nam, Jeong-Kil Park, Bock Hur, Hyeon-Cheol Kim
    Journal of Korean Academy of Conservative Dentistry.2009; 34(3): 208.     CrossRef
  • Comparison of biocompatibility of four root perforation repair materials
    Min-Kyung Kang, In-Ho Bae, Jeong-Tae Koh, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
    Journal of Korean Academy of Conservative Dentistry.2009; 34(3): 192.     CrossRef
  • A bioactivity study of Portland cement mixed with β-glycerophosphosphate on human pulp cell
    Young-Hwan Oh, Young-Joo Jang, Yong-Bum Cho
    Journal of Korean Academy of Conservative Dentistry.2009; 34(5): 415.     CrossRef
  • 172 View
  • 2 Download
  • 12 Crossref
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP