The aim of this
Thirty-two premolars with single canals that required extraction were included. Following anesthesia, access, and initial canal preparation with size 10 and 15 K-flex files and SX and S1 rotary ProTaper files, the canals were irrigated with 2.5% sodium hypochlorite. The length of the root canal was verified 3 times for each tooth using the 2 apex locators and once using the radiographic technique. Teeth were extracted and the actual WL was determined using size 15 K-files under a × 25 magnification. The Biostat 4.0 program (AnalystSoft Inc.) was used for comparing the direct measurements with those obtained using radiographic technique and the apex locators. Pearson's correlation analysis and analysis of variance (ANOVA) were used for statistical analyses.
The measurements obtained using the visual method exhibited the strongest correlation with Root ZX II (
Both EALs presented similar accuracy that was higher than that of the radiographic measurements obtained with Ingle's technique. Our results suggest that the use of these EALs for MF location is more accurate than the use of radiographic measurements.
The purpose of this study is to compare the apical transportation and working length change in curved root canals created in resin blocks, using 3 geometrically different types of Ni-Ti files, K3, NRT, and Profile.
The curvature of 30 resin blocks was measured by Schneider technique and each groups of Ni-Ti files were allocated with 10 resin blocks at random. The canals were shaped with Ni-Ti files by Crown-down technique. It was analyzed by Double radiograph superimposition method (Backman CA 1992), and for the accuracy and consistency, specially designed jig, digital X-ray, and CAD/CAM software for measurement of apical transportation were used. The amount of apical transportation was measured at 0, 1, 3, 5 mm from 'apical foramen - 0.5 mm' area, and the alteration of the working length before and after canal shaping was also measured. For statistics, Kruskal-Wallis One Way Analysis was used.
There was no significant difference between the groups in the amount of working length change and apical transportation at 0, 1, and 3 mm area (
As a result of this study, the 3 geometrically different Ni-Ti files showed no significant difference in apical transportation and working length change and maintained the original root canal shape.
The aim of this study was to investigate average working lengths of Korean posterior teeth and evaluate validity of endodontic file length.
The endodontic working length of the posterior teeth of 670 Korean patients were measured than each mean value and standard deviation were investigated than the frequency deviation and standard deviation per each length were calculated.
Among the canals of premolar, 66.5% of canal length was marked under 20 mm by endodontic working length and 95.4% could be measured under 22 mm and Among the canals of molars, 95.5% of canal length was marked under 20 mm endodontic working length.
With the result of measurement of endodontic working length of premolars of Korean, it suggested that 23 mm endodontic file is more proper than the 21 mm and 25 mm file on the market.
The purposes of this study were to assess the accuracy of measurements in pre-enlarged canals with small instruments and to compare the accuracies, in enlarged canal, with small size instruments and instruments that match the actual canal diameter using Root ZX, Bingo1020, SmarPex, and e-Magic Finder. Ten extracted teeth were embedded in an alginate model made for testing apex locators. A size 10 file was placed into the root canal until the tip of the file reached the plane of the major diameter of the foramen under a dental operating microscope at the 25 × magnification. The measurement was done with digital caliper and defined as actual length. Electronic length measurement with a size 10 file in pre-enlarged canal was done by reading the index indicating Apex of each device to gain a definite value. After completion of canal enlargement to a size 45 file, each difference between actual length and electric measurement value with a size 10 and 40 files in enlarged canal was recorded as L10 and L40. The one-way ANOVA and Scheffe's multiple range tests were computed for analyze the differences among the four apex locators in the same group. The Student's t-test between L10 and L40 of each locator was done. The accuracies of electronic measurements were significantly different among the 4 devices. The file size made no difference on the accuracy of electronic measurement in enlarged canal with same device. The e-Magic Finder was the most accurate device among the 4 apex locators used in this study.
To evaluate the change of working length with various instrumentation techniques in curved canals, working length and canal curvature were determined before and after canal instrumentation in buccal or mesial canals of extracted human molars. Stainless steel K-files (MANI®, Matsutani Seisakusho Co. Takanezawa, Japan), nickel-titanium K-files (Naviflex NT™, Brassler, Savannah, USA), ProFile®, and ProTaper™ (Dentsply-Maillefer, Ballaigues, Switzerland) were used to prepare the canals with crown-down technique. In two hand instrumentation groups, coronal flaring was made with Gates Glidden burs. Apical canals were instrumented until apical diameter had attained a size of 30. Positional relation between the tooth apex and the #10 K-file tip was examined by using AutoCAD 2000 (Autodesk Corp., San Rafael. CA, USA) under a stereomicroscope before and after coronal flaring, and after apical instrumentation. Degree of canal curvature was also measured with Schneider's method in radiographs. Data of working length and canal curvature changes were statistically analyzed with one-way ANOVA and Tukey's studentized range test.
Working length and canal curvature were decreased significantly in each step in all instrumentation groups. Coronal flaring using Gates Glidden burs in hand instrument groups and whole canal instrumentation using stainless steel hand K-files caused significantly more working length change than in ProFile instrumentation group (p < 0.05).
The result of this study demonstrates that all of the above kinds of instrumentation in curved canals cause reduction of working length and canal curvature at each instrumentation steps, and hand instrumentation causes more working length change than ProFile.
The aim of this study was to compare the length between the mesio-buccal and mesio-lingual canal of the mandibular molars before and after early coronal flaring at the different measuring time using several electronic apex locators. Fifty mandibular molars with complete apical formation and patent foramens were selected. After establishing the initial working length of the buccal and lingual canal of the mesial root using a surgical microscope (Carl Zeiss Co. Germany) at 25X with #15 K-file tip just visible at the foramen, radiographs were taken for the working length. After measuring the length of mesio-buccal and mesio-lingual canal (control group), the electronic lengths were measured at different times using several electronic apex locators (experimental groups; I-Root ZX, II-Bingo, III-Propex, IV-Diagnostic). After early coronal flaring using the K3 file, the additional electronic lengths were measured using the same manner.
The results were as follows: One canal has a correct working length for the mesial root of the mandibular molar, it can be used effectively for measuring the electronic working length of another canal when the files are superimposed or encountered at the apex. In addition, the accuracy of the electronic apex locators was increased as the measurement was accomplished after the early coronal flaring of the root canal and the measuring time was repeated.
The aim of this study was to compare the initial apical file (IAF) length between the mesio-buccanl and mesio-lingual canals of the mandibular molar before and after early coronal flaring. Fifty mandibular molars with complete apical formation and patent foramens were selected. After establishing the initial working length of the buccal and lingual canal of the mesial root using the Root-ZX, radiographs were taken for the working length with a 0.5 mm short of #15 K-file tip just visible at the foramen under a surgical microscope (OPMI 1-FC, Carl Zeiss Co. Germany) at 25X. After early coronal flaring using the K3 file, additional radiographs were taken using the same procedure. The root canal morphology and the difference in working length between the buccal and lingual canals were evaluated.
These results show that the difference in the length between the mesio-buccal and mesio-lingual canals of the mandibular molar was ≤ 0.5 mm. If one canal has a correct working length for the mesial root of the mandibular molar, it can be used effectively for measuring the working length of another canal when the files are superimposed or loosening. In addition, the measured the working length after early coronal flaring is much more reasonable because the difference in the length between the mesio-buccal and mesio-lingual canals can be reduced.