Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Search

Page Path
HOME > Search
3 "Viscoelastic"
Filter
Filter
Article category
Keywords
Publication year
Authors
Basic Research
Rheological characterization of thermoplasticized injectable gutta percha and resilon
Juhea Chang, Seung-Ho Baek, In-Bog Lee
J Korean Acad Conserv Dent 2011;36(5):377-384.   Published online September 30, 2011
DOI: https://doi.org/10.5395/JKACD.2011.36.5.377
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to observe the change in the viscoelastic properties of thermoplasticized injectable root canal filling materials as a function of temperature and to compare the handling characteristics of these materials.

Materials and Methods

Three commercial gutta perchas and Resilon (Pentron Clinical Technologies) in a pellet form were heated in the Obtura-II system (Obtura Spartan) at 140℃ and 200℃, and the extrusion temperature of the thermoplasticized materials was measured. The viscoelastic properties of the materials as a function of temperature were evaluated using a rheometer. The elastic modulus G', viscous modulus G", loss tangent tan δ, and complex viscosity η* were determined. The phase transition temperature was determined by both the rheometer and a differential scanning calorimeter (DSC). The consistency of the materials was compared under compacting pressure at 60℃ and 40℃ by a squeeze test.

Results

The three gutta perchas had dissimilar profiles in viscoelastic properties with varying temperature. The phase transition of softened materials into solidification occurred at 40℃ to 50℃, and the onset temperatures obtained by a rheometer and a DSC were similar to each other. The onset temperature of phase transition and the consistency upon compaction pressure were different among the materials (p < 0.05). Resilon had a rheologically similar pattern to the gutta perchas, and was featured between high and low-flow gutta perchas.

Conclusions

The rheological characteristics of the thermoplasticized root canal filling materials changed under a cooling process. The dissimilar viscoelastic properties among the materials require different handling characteristics during an injecting and compacting procedure.

  • 17 View
  • 0 Download
Close layer
Original Articles
Slumping resistance and viscoelasticity of resin composite pastes
Hee Yeon Suh, In Bog Lee
J Korean Acad Conserv Dent 2008;33(3):235-245.   Published online May 31, 2008
DOI: https://doi.org/10.5395/JKACD.2008.33.3.235
AbstractAbstract PDFPubReaderePub

The aim of this study was to develop a method for measuring the slumping resistance of resin composites and to relate it to the rheological characteristics.

Five commercial hybrid composites (Z100, Z250, DenFil, Tetric Ceram, ClearFil) and a nanofill composite (Z350) were used to make disc-shaped specimens of 2 mm thickness. An aluminum mold with square shaped cutting surface was pressed onto the composite discs to make standardized imprints. The imprints were light-cured either immediately (non-slumped) or after waiting for 3 minutes at 25℃ (slumped). White stone replicas were made and then scanned for topography using a laser 3-D profilometer. Slumping resistance index (SRI) was defined as the ratio of the groove depth of the slumped specimen to that of the non-slumped specimen. The pre-cure viscoelasticity of each composite was evaluated by an oscillatory shear test and normal stress was measured by a squeeze test using a rheometer. Flow test was also performed using a flow tester. Correlation analysis was performed to investigate the relationship between the viscoelastic properties and the SRI.

SRI varied between the six materials (Z100 < DenFil < Z250 < ClearFil < Tetric Ceram < Z350). The SRI was strongly correlated with the viscous (loss) shear modulus G' but not with the loss tangent. Also, slumping resistance was more closely related to the resistance to shear flow than to the normal stress.

Slumping tendency could be quantified using the imprint method and SRI. The index may be applicable to evaluate the clinical handling characteristics of composites.

  • 16 View
  • 0 Download
Close layer
Rheological characterization of composites using a vertical oscillation rheometer
In-Bog Lee, Byung-Hoon Cho, Ho-Hyun Son, Sang-Tag Lee, Chung-Moon Um
J Korean Acad Conserv Dent 2004;29(6):489-497.   Published online November 30, 2004
DOI: https://doi.org/10.5395/JKACD.2004.29.6.489
AbstractAbstract PDFPubReaderePub
Objective

The purpose of this study was to investigate the viscoelastic properties related to handling characteristics of composite resins.

Methods

A custom designed vertical oscillation rheometer (VOR) was used for rheological measurements of composites. The VOR consists of three parts: (1) a measuring unit, (2) a deformation induction unit and (3) a force detecting unit. Two medium viscous composites, Z100 and Z250 and two packable composites, P60 and SureFil were tested. The viscoelastic material function, including complex modulus E* and phase angle δ, were measured. A dynamic oscillatory test was used to evaluate the storage modulus (E'), loss modulus (E") and loss tangent (tanδ) of the composites as a function of frequency (ω) from 0.1 to 20 Hz at 23℃.

Results

The E' and E" increased with increasing frequency and showed differences in magnitude between brands. The E*s of composites at ω = 2 Hz, normalized to that of Z100, were 2.16 (Z250), 4.80 (P60) and 25.21 (SureFil). The magnitudes and patterns of the change of tanδ of composites with increasing frequency were significantly different between brands. The relationships between the complex modulus E*, the phase angle δ and the frequency ω were represented by frequency domain phasor form, E* (ω) = E*e = E*∠δ.

Conclusions

The viscoelasticity of composites that influences handling characteristics is significant different between brands. The VOR is a relatively simple device for dynamic, mechanical analysis of high viscous dental composites. The locus of frequency domain phasor plots in a complex plane is a valuable method of representing the viscoelastic properties of composites.

  • 17 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP