This study aimed to compare the accuracy of conventional intraoral (CI) radiography, photostimulable phosphor (PSP) radiography, cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) for detection of strip and root perforations in endodontically treated teeth.
Mesial and distal roots of 72 recently extracted molar were endodontically prepared. Perforations were created in 0.2, 0.3, or 0.4 mm diameter around the furcation of 48 roots (strip perforation) and at the external surface of 48 roots (root perforation); 48 roots were not perforated (control group). After root obturation, intraoral radiography, CBCT and MDCT were taken. Discontinuity in the root structure was interpreted as perforation. Two observers examined the images. Data were analyzed using Stata software and Chi-square test.
The sensitivity and specificity of CI, PSP, CBCT and MDCT in detection of strip perforations were 81.25% and 93.75%, 85.42% and 91.67%, 97.92% and 85.42%, and 72.92% and 87.50%, respectively. For diagnosis of root perforation, the sensitivity and specificity were 87.50% and 93.75%, 89.58% and 91.67%, 97.92% and 85.42%, and 81.25% and 87.50%, respectively. For detection of strip perforation, the difference between CBCT and all other methods including CI, PSP and MDCT was significant (
If it is not possible to diagnose the root perforations by periapical radiographs, CBCT is the best radiographic technique while MDCT is not recommended.
To evaluate the accuracy of the Root ZX in teeth with simulated root perforation in the presence of gel or liquid type endodontic irrigants, such as saline, 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine liquid, 2% chlorhexidine gel, and RC-Prep, and also to determine the electrical conductivities of these endodontic irrigants.
A root perforation was simulated on twenty freshly extracted teeth by means of a small perforation made on the proximal surface of the root at 4 mm from the anatomic apex. Root ZX was used to locate root perforation and measure the electronic working lengths. The results obtained were compared with the actual working length (AWL) and the actual location of perforations (AP), allowing tolerances of 0.5 or 1.0 mm. Measurements within these limits were considered as acceptable. Chi-square test or the Fisher's exact test was used to evaluate significance. Electrical conductivities of each irrigant were also measured with an electrical conductivity tester.
The accuracies of the Root ZX in perforated teeth were significantly different between liquid types (saline, NaOCl) and gel types (chlorhexidine gel, RC-Prep). The accuracies of electronic working lengths in perforated teeth were higher in gel types than in liquid types. The accuracy in locating root perforation was higher in liquid types than gel types. 5.25% NaOCl had the highest electrical conductivity, whereas 2% chlorhexidine gel and RC-Prep gel had the lowest electrical conductivities among the five irrigants.
Different canal irrigants with different electrical conductivities may affect the accuracy of the Root ZX in perforated teeth.