The purpose of this study was to examine the effect of glycerin topical application on the surface hardness of composite after curing.
A composite (Z-250, 3M ESPE) was packed into a disc-shaped brass mold and light cured according to one of the following protocols. Group 1 (control) was exposed to air and light cured for 40 sec, group 2 was covered with a Mylar strip and light cured for 40 sec, group 3 was surface coated with glycerin and light cured for 40 sec, and group 4 was exposed to air and light cured for 20 sec and then surface coated with glycerin and cured for additional 20 sec. Twenty specimens were prepared for each group. The surface hardnesses of specimens were measured with or without polishing. Five days later, the surface hardness of each specimen was measured again. Data were analyzed by three-way ANOVA and Tukey's post hoc tests.
The surface hardnesses of the unpolished specimens immediately after curing decreased in the following order: group 2 > 3 > 4 > 1. For the polished specimens, there was no significant difference among the groups. Within the same group, the hardness measured after five days was increased compared to that immediately after curing, and the polished specimens showed greater hardness than did the unpolished specimens.
The most effective way to increase the surface hardness of composite is polishing after curing. The uses of a Mylar strip or glycerin topical application before curing is recommended.
The aim of this study was to evaluate the effect of two polishing methods and chemical conditioning on the surface of hybrid composites.
Ninety cylindrical specimens (diameter: 8 mm, depth: 2 mm) were made with three hybrid composites - Filtek Z250, Tetric Ceram, DenFil. Specimens for each composite were randomly divided into three treatment subgroups - ① Mylar strip (no treatment), ② Sof-Lex XT system, ③ PoGo system. Average surface roughness(Ra) was taken using a surface profilometer at the time of setting and after immersion into 0.02N lactic acid for 1 week and 1 month. Representative specimens were examined by scanning electron microscopy. The data were analyzed using ANOVA and Scheffe's tests at 0.05% significance level.
The results were as follows:
Mylar strip resulted in smoother surface than PoGo and Sof-Lex system(p<0.001). Sof-Lex system gave the worst results. Tetric Ceram was smoother than DenFil and Z250 when cured under only mylar strip. However, it was significantly rougher than other materials when polished with PoGo system. All materials showed rough surface after storage in 0.02N lactic acid, except groups polished with a PoGo system.
The PoGo system gave a superior polish than Sof-Lex system for the three composites. However, the correlation to clinical practice may be limited, since there are several processes, such as abrasive, fatigue, and corrosive mechanisms. Thus, further studies are needed for polishing technique under in vivo conditions.