Leakage studies have been performed frequently, since a fluid-tight seal provided by various dental filling materials has been considered clinically important. The leakage of the various root-end filling materials has been widely investigated mostly dye penetration method. These dye studies cannot offer any information about the quality of the seal of a test material over a long period of time The purpose of this study was to evaluate the microleakage of root end cavities in blood contamination filled amalgam, intermediate restorative material(IRM), light cured glass ionomer cement(GI) and mineral trioxide aggregate(MTA) by means of a modified fluid transport model. Fifty standard human root sections, each 5mm high and with a central pulp lumen of 3mm in diameter, were and filled with our commonly used or potential root end filling materials after they were contaminated with blood. At 24h, 72h, 1, 2, 4, 8, and 12 weeks after filling, leakage along these filling materials was determined under a low pressure of 10KPa(0.1atm) using a fluid transport model.
The results were as follows:
1. MTA group showed a tendency of decreasing percent of gross leakage (20ml/day) in process of time, whereas the other materials showed a tendency of increasing in the process time.
2. At the all time interval, GI group leaked significantly less than amalgam group and IRM group (p<0.05).
3. At the 4 weeks, the percentage of gross leakage in MTA group decreased to 0% thereafter, the low percentage of gross leakage was maintained in MTA group until the end of the experiment, whereas the percentage in IRM group increased to 100%.
4. At the 12 weeks, percentage of gross leakage was significantly low in MTA group(0%), comparison with GI group(40%), amalgam group(90%) and IRM group(100%), but there was no significant difference between latter two materials.