Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Author index

Page Path
HOME > Browse articles > Author index
Search
Bum-Jun Park 2 Articles
Physical and chemical properties of experimental mixture of mineral trioxide aggregate and glass ionomer cement
Yu-Na Jeong, So-Young Yang, Bum-Jun Park, Yeong-Joon Park, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
J Korean Acad Conserv Dent 2010;35(5):344-352.   Published online September 30, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.5.344
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of this study was to determine the setting time, compressive strength, solubility, and pH of mineral trioxide aggregate (MTA) mixed with glass ionomer cement (GIC) and to compare these properties with those of MTA, GIC, IRM, and SuperEBA.

Materials and Methods

Setting time, compressive strength, and solubility were determined according to the ISO 9917 or 6876 method. The pH of the test materials was determined using a pH meter with specified electrode for solid specimen.

Results

The setting time of MTA mixed with GIC was significantly shorter than that of MTA. Compressive strength of MTA mixed with GIC was significantly lower than that of other materials at all time points for 7 days. Solubility of 1 : 1 and 2 : 1 specimen from MTA mixed with GIC was significantly higher than that of other materials. Solubility of 1 : 2 specimen was similar to that of MTA. The pH of MTA mixed with GIC was 2-4 immediately after mixing and increased to 5-7 after 1 day.

Conclusions

The setting time of MTA mixed with GIC was improved compared with MTA. However, other properties such as compressive strength and pH proved to be inferior to those of MTA. To be clinically feasible, further investigation is necessary to find the proper mixing ratio in order to improve the drawbacks of MTA without impairing the pre-existing advantages and to assess the biocompatibility.

  • 21 View
  • 0 Download
Close layer
Biocompatibility of experimental mixture of mineral trioxide aggregate and glass ionomer cement
Min-Jae Oh, Yu-Na Jeong, In-Ho Bae, So-Young Yang, Bum-Jun Park, Jeong-Tae Koh, Yun-Chan Hwang, In-Nam Hwang, Won-Mann Oh
J Korean Acad Conserv Dent 2010;35(5):359-367.   Published online September 30, 2010
DOI: https://doi.org/10.5395/JKACD.2010.35.5.359
AbstractAbstract PDFPubReaderePub
Objectives

The purpose of the present in vitro study was to evaluate the biocompatibility of mineral trioxide aggregate (MTA) mixed with glass ionomer cement (GIC), and to compare it with that of MTA, GIC, IRM and SuperEBA.

Materials and Methods

Experimental groups were divided into 3 groups such as 1 : 1, 2 : 1, and 1 : 2 groups depending on the mixing ratios of MTA powder and GIC powder. Instead of distilled water, GIC liquid was mixed with the powder. This study was carried out using MG-63 cells derived from human osteosarcoma. They were incubated for 1 day on the surfaces of disc samples and examined by scanning electron microscopy. To evaluate the cytotoxicity of test materials quantitatively, XTT assay was used. The cells were exposed to the extracts and incubated. Cell viability was recorded by measuring the optical density of each test well in reference to controls.

Results

The SEM revealed that elongated, dense, and almost confluent cells were observed in the cultures of MTA mixed with GIC, MTA and GIC. On the contrary, cells on the surface of IRM or SuperEBA were round in shape. In XTT assay, cell viability of MTA mixed with GIC group was similar to that of MTA or GIC at all time points. IRM and SuperEBA showed significantly lower cell viability than other groups at all time points (p < 0.05).

Conclusions

In this research MTA mixed with GIC showed similar cellular responses as MTA and GIC. It suggests that MTA mixed with GIC has good biocompatibility like MTA and GIC.

  • 17 View
  • 0 Download
Close layer

Restor Dent Endod : Restorative Dentistry & Endodontics
Close layer
TOP