Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-12.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Early caries detection using optical coherence tomography: a review of the literature
Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Articles

Page Path
HOME > Restor Dent Endod > Volume 36(5); 2011 > Article
Review Article Early caries detection using optical coherence tomography: a review of the literature
Young-Seok Park, DDS, MSD, PhD1, Byeong-Hoon Cho, DDS, MSD, PhD2, Seung-Pyo Lee, DDS, MSD, PhD1, Won-Jun Shon, DDS, MSD, PhD2,*
Journal of Korean Academy of Conservative Dentistry 2011;36(5):367-376.
DOI: https://doi.org/10.5395/JKACD.2011.36.5.367
Published online: September 14, 2011

1Department of Oral Anatomy, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea

2Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, Seoul, Korea

*Correspondence to Won-Jun Shon, DDS, MSD, PhD., Associate Professor, Department of Conservative Dentistry, Seoul National University School of Dentistry and Dental Research Institute, 28, Yeongeon-dong, Jongno-gu, Seoul, Korea 110-768, TEL, +82-2-2072-3514; FAX, +82-2-2072-3859; E-mail, endoson@snu.ac.kr
• Received: July 17, 2011   • Revised: August 19, 2011   • Accepted: August 21, 2011

Copyright © 2011 The Korean Academy of Conservative Dentistry

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 16 Views
  • 0 Download
prev next
  • Early detection of carious lesions increases the possibility of treatment without the need for surgical intervention. Optical coherence tomography (OCT) is an emerging three-dimensional imaging technique that has been successfully used in other medical fields, such as ophthalmology for optical biopsy, and is a prospective candidate for early caries detection. The technique is based on low coherence interferometry and is advantageous in that it is non-invasive, does not use ionizing radiation, and can render three-dimensional images. A brief history of the development of this technique and its principles are discussed in this paper. There have been numerous studies on caries detection, which were mostly in vitro or ex vivo experiments. Through these studies, the feasibility of OCT for caries detection was confirmed. However, further research should be performed, including in vivo studies of OCT applications, in order to prove the clinical usefulness of this technique. In addition, some technological problems must be resolved in the near future to allow for the use of OCT in everyday practice.
Figure 1.
The general scheme of an interferometric OCT setup. The linear polarizer and the polarizing beam splitter in parenthesis are equipped in PS-OCT. OCT, optical coherence tomography; PS-OCT, polarization-sensitive OCT. This illustration was partly modified with permission from the original one of Wojkowski12 by courtesy of Optical Society.
jkacd-36-367f1.jpg
  • 1. Pereira AC, Verdonschot EH, Huysmans MC. Caries detection methods: can they aid decision making for invasive sealant treatment? Caries Res 2001;35:83-89.PubMed
  • 2. Shimada Y, Sadr A, Burrow MF, Tagami J, Ozawa N, Sumi Y. Validation of swept-source optical coherence tomography (SS-OCT) for the diagnosis of occlusal caries. J Dent 2010;38:655-665.ArticlePubMed
  • 3. Bader JD, Shugars DA, Bonito AJ. Systematic reviews of selected dental caries diagnostic and management methods. J Dent Educ 2001;65:960-968.ArticlePubMedPDF
  • 4. Featherstone JD. The continuum of dental caries-evidence for a dynamic disease process. J Dent Res 2004;(83 Spec No C):C39-42.ArticlePubMedPDF
  • 5. Kidd EA, Fejerskov O. What constitutes dental caries? Histopathology of carious enamel and dentin related to the action of cariogenic biofilms. J Dent Res 2004;(83 Spec No C):C35-38.
  • 6. Featherstone JD. Prevention and reversal of dental caries: role of low level fluoride. Community Dent Oral Epidemiol 1999;27:31-40.ArticlePubMed
  • 7. Jones RS, Darling CL, Featherstone JD, Fried D. Imaging artificial caries on the occlusal surfaces with polarization-sensitive optical coherence tomography. Caries Res 2006;40:81-89.ArticlePubMedPDF
  • 8. Popescu DP, Sowa MG, Hewko MD, Choo-Smith LP. Assessment of early demineralization in teeth using the signal attenuation in optical coherence tomography images. J Biomed Opt 2008;13:054053.ArticlePubMed
  • 9. Health NIo. Diagnosis and manangement of dental caries throughout life; National Institutes of Health Consensus Development Conference statement Diagnosis and management of dental caries throughout life, March 26-28, 2001. J Am Dent Assoc 2001;132:1153-1161.PubMed
  • 10. Bashkansky M, Reintjes J. Statistics and reduction of speckle in optical coherence tomography. Opt Lett 2000;25:545-547.ArticlePubMed
  • 11. Popescu D. Speckle noise attenuation in optical coherence tomography by compounding images acquired at different positions of the sample. Opt Commun 2006;269:247-251.Article
  • 12. Wojtkowski M. High-speed optical coherence tomography: basics and applications. Appl Opt 2010;49:D30-61.ArticlePubMed
  • 13. Tomlins PH, Wang RK. Theory, developments and applications of optical coherence tomography. J Phys D Appl Phys 2005;38:2519-2535.
  • 14. Fujimoto J. Introduction to optical coherence tomography. In: Drexler W, Fujimoto JG editors, editors. Optical coherence tomography. Springer; 2008. p. p1-45.ArticlePubMed
  • 15. Flournoy PA, McClure RW, Wyntjes G. White-light interferometric thickness gauge. Appl Opt 1972;11:1907-1915.ArticlePubMed
  • 16. Li T, Wang A, Murphy K, Claus R. White-light scanning fiber Michelson interferometer for absolute position-distance measurement. Opt Lett 1995;20:785-787.ArticlePubMed
  • 17. Maruyama H, Inoue S, Mitsuyama T, Ohmi M, Haruna M. Low-coherence interferometer system for the simultaneous measurement of refractive index and thickness. Appl Opt 2002;41:1315-1322.PubMed
  • 18. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. Science 1991;254:1178-1181.ArticlePubMedPMC
  • 19. Colston BW Jr, Everett MJ, Da Silva LB, Otis LL, Stroeve P, Nathel H. Imaging of hard-and soft-tissue structure in the oral cavity by optical coherence tomography. Appl Opt 1998;37:3582-3585.ArticlePubMed
  • 20. Tsai MT, Lee HC, Lu CW, Wang YM, Lee CK, Yang CC, Chiang CP. Delineation of an oral cancer lesion with swept-source optical coherence tomography. J Biomed Opt 2008;13:044012.ArticlePubMed
  • 21. Tsai MT, Lee CK, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography. J Biomed Opt 2009;14:044028.PubMed
  • 22. Lee CK, Tsai MT, Lee HC, Chen HM, Chiang CP, Wang YM, Yang CC. Diagnosis of oral submucous fibrosis with optical coherence tomography. J Biomed Opt 2009;14:054008.ArticlePubMed
  • 23. Tsai MT, Lee HC, Lee CK, Yu CH, Chen HM, Chiang CP, Chang CC, Wang YM, Yang CC. Effective indicators for diagnosis of oral cancer using optical coherence tomography. Opt Express 2008;16:15847-15862.ArticlePubMed
  • 24. Wilder-Smith P, Osann K, Hanna N, El Abbadi N, Brenner M, Messadi D, Krasieva T. In vivo multiphoton fluorescence imaging: a novel approach to oral malignancy. Lasers Surg Med 2004;35:96-103.ArticlePubMed
  • 25. Wilder-Smith P, Hammer-Wilson MJ, Zhang J, Wang Q, Osann K, Chen Z, Wigdor H, Schwartz J, Epstein J. In vivo imaging of oral mucositis in an animal model using optical coherence tomography and optical Doppler tomography. Clin Cancer Res 2007;13:2449-2454.PubMed
  • 26. Wilder-Smith P, Krasieva T, Jung WG, Zhang J, Chen Z, Osann K, Tromberg B. Noninvasive imaging of oral premalignancy and malignancy. J Biomed Opt 2005;10:051601.ArticlePubMed
  • 27. Na J, Lee BH, Baek JH, Choi ES. Optical approach for monitoring the periodontal ligament changes induced by orthodontic forces around maxillary anterior teeth of white rats. Med Biol Eng Comput 2008;46:597-603.ArticlePubMedPDF
  • 28. Baek JH, Na J, Lee BH, Choi E, Son WS. Optical approach to the periodontal ligament under orthodontic tooth movement: a preliminary study with optical coherence tomography. Am J Orthod Dentofacial Orthop 2009;135:252-259.ArticlePubMed
  • 29. Simonsohn G. Die Verteilung des Brechungsindex in der Augenlinse. Optik 1969;29:81-86.
  • 30. Rassow B. The retinal resolving power measured by laser interference fringes. Proc SPIE 1978;164:154-157.
  • 31. Fercher A. In vivo Measurement of Fundus Pulsations by Laser Interferometry. IEEE J Qu El 1984;20:1469-1471.Article
  • 32. Fercher A. Ophthalmic Laser Interferometry. Proc SPIE 1986;658:48-51.Article
  • 33. Fercher AF, Mengedoht K, Werner W. Eye-length measurement by interferometry with partially coherent light. Opt Lett 1988;13:186-188.PubMed
  • 34. Fercher A. Measurement of intraocular optical distances using partially coherent laser light. JMO 1991;38:1327-1333.Article
  • 35. Huang D, Wang J, Lin CP, Puliafito CA, Fujimoto JG. Micron-resolution ranging of cornea anterior chamber by optical reflectometry. Lasers Surg Med 1991;11:419-425.ArticlePubMed
  • 36. Santodomingo-Rubido J, Mallen EA, Gilmartin B, Wolffsohn JS. A new non-contact optical device for ocular biometry. Br J Ophthalmol 2002;86:458-462.ArticlePubMedPMC
  • 37. Goyal R, North RV, Morgan JE. Comparison of laser interferometry and ultrasound A-scan in the measurement of axial length. Acta Ophthalmol Scand 2003;81:331-335.PubMed
  • 38. Hitzenberger CK. Optical measurement of the axial eye length by laser Doppler interferometry. Invest Ophthalmol Vis Sci 1991;32:616-624.PubMed
  • 39. Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, Fercher AF. Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 1998;126:524-534.ArticlePubMed
  • 40. Fercher AF. Ophthalmic Interferometry. In: von Bally G, Khanna S editors, editors. Optics in Medicine, Biology and Environmental Research. Selected Contributions to the First International Conference on Optics Within Life Sciences (OWLS I). Garmisch-Partenkirchen; Germany: 12-16 August 1990 (ICO-15 SAT). Amsterdam, London, New York, Tokyo. Elsevier; 1993. p221-228.
  • 41. Fercher AF, Hitzenberger CK, Drexler W, Kamp G, Sattmann H. In vivo optical coherence tomography. Am J Ophthalmol 1993;116:113-114.PubMed
  • 42. Swanson EA, Izatt JA, Hee MR, Huang D, Lin CP, Schuman JS, Pulliafito CA, Fujimoto JG. In vivo retinal imaging by optical coherence tomography. Opt Lett 1993;18:1864-1866.ArticlePubMed
  • 43. Tearney GJ, Boppart SA, Bouma BE, Brezinski ME, Weissman NJ, Southern JF, Fujimoto JG. Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography. Opt Lett 1996;21:543-545.ArticlePubMed
  • 44. Raffel OC, Akasaka T, Jang IK. Cardiac optical coherence tomography. Heart 2008;94:1200-1210.ArticlePubMed
  • 45. Sivak M. High-resolution endoscopic imaging of the GI tract using optical coherence tomography. Gastrointestin Endosc 2001;54:474-479.
  • 46. Drexler W. Ultrahigh-resolution optical coherence tomography. J Biomed Opt 2004;9:47-74.ArticlePubMed
  • 47. Murphy B. The Evolution of Spectral Domain OCT, Ophthalmology Management. In: Ophthalmology Management. Lippincott Williams & Wilkins VisionCare Group; 2008.
  • 48. Smolka G. Optical Coherence Tomograph: technology, markets, and applications 2008-12. In: Biooptics World. Tulsa: PennWell Corp; 2007.
  • 49. Hee MR, Puliafito CA, Wong C, Duker JS, Reichel E, Schuman JS, Swanson EA, Fujimoto JG. Optical coherence tomography of macular holes. Ophthalmology 1995;102:748-756.PubMed
  • 50. Wojtkowski M, Leitgeb R, Kowalczyk A, Bajraszewski T, Fercher AF. In vivo human retinal imaging by Fourier domain optical coherence tomography. J Biomed Opt 2002;7:457-463.ArticlePubMed
  • 51. Yun S, Tearney G, Bouma B, Park B, de Boer J. Highspeed spectral-domain optical coherence tomography at 1.3 mum wavelength. Opt Express 2003;11:3598-3604.ArticlePubMed
  • 52. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005;112:1734-1746.ArticlePubMed
  • 53. Wojtkowski M, Srinivasan V, Ko T, Fujimoto J, Kowalczyk A, Duker J. Ultrahigh-resolution, highspeed, Fourier domain optical coherence tomography and methods for dispersion compensation. Opt Express 2004;12:2404-2422.PubMed
  • 54. Nassif N, Cense B, Park B, Pierce M, Yun S, Bouma B, Tearney G, Chen T, de Boer J. In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve. Opt Express 2004;12:367-376.ArticlePubMed
  • 55. Vaarkamp J, ten Bosch JJ, Verdonschot EH. Light propagation through teeth containing simulated caries lesions. Phys Med Biol 1995;40:1375-1387.ArticlePubMed
  • 56. Van de Rijke JW, Ten Bosch JJ. Optical quantification of caries-like lesions in vitro by use of a fluorescent dye. J Dent Res 1990;69:1184-1187.ArticlePubMedPDF
  • 57. Hee MR, Huang D, Swanson EA, Fujimoto JG. Polarization-Sensitive Low-Coherence Reflectometer for Birefringence Characterization and Ranging. J Opt Soc Am B Opt Phys 1992;9:903-908.
  • 58. de Boer JF, Milner TE, van Gemert MJ, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt Lett 1997;22:934-936.ArticlePubMed
  • 59. Bohren CF, Nevitt TJ. Absorption by a sphere: a simple approximation. Appl Opt 1983;22:774-775.ArticlePubMed
  • 60. Chinn SR, Swanson EA, Fujimoto JG. Optical coherence tomography using a frequency-tunable optical source. Opt Lett 1997;22:340-342.ArticlePubMed
  • 61. Colston B, Sathyam U, Dasilva L, Everett M, Stroeve P, Otis L, Dental OCT. Opt Express 1998;3:230-238.
  • 62. Amaechi BT, Higham SM, Podoleanu AG, Rogers JA, Jackson DA. Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J Oral Rehabil 2001;28:1092-1093.PubMed
  • 63. Amaechi BT, Podoleanu A, Higham SM, Jackson DA. Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J Biomed Opt 2003;8:642-647.ArticlePubMed
  • 64. Amaechi BT, Podoleanu AG, Komarov G, Higham SM, Jackson DA. Quantification of root caries using optical coherence tomography and microradiography: a correlational study. Oral Health Prev Dent 2004;2:377-382.PubMed
  • 65. Fried D, Xie J, Shafi S, Featherstone JD, Breunig TM, Le C. Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J Biomed Opt 2002;7:618-627.ArticlePubMed
  • 66. Jones RS, Staninec M, Fried D. Imaging artificial caries under composite sealants and restorations. J Biomed Opt 2004;9:1297-1304.PubMed
  • 67. Ngaotheppitak P, Darling CL, Fried D. Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg Med 2005;37:78-88.ArticlePubMed
  • 68. Jones RS, Darling CL, Featherstone JD, Fried D. Remineralization of in vitro dental caries assessed with polarization-sensitive optical coherence tomography. J Biomed Opt 2006;11:014016.ArticlePubMed
  • 69. Jones RS, Fried D. Remineralization of enamel caries can decrease optical reflectivity. J Dent Res 2006;85:804-808.ArticlePubMedPDF
  • 70. Chong SL, Darling CL, Fried D. Nondestructive measurement of the inhibition of demineralization on smooth surfaces using polarization-sensitive optical coherence tomography. Lasers Surg Med 2007;39:422-427.PubMed
  • 71. Can AM, Darling CL, Ho C, Fried D. Non-destructive assessment of inhibition of demineralization in dental enamel irradiated by a lambda=9.3-microm CO2 laser at ablative irradiation intensities with PS-OCT. Lasers Surg Med 2008;40:342-349.ArticlePubMed
  • 72. Hsu DJ, Darling CL, Lachica MM, Fried D. Nondestructive assessment of the inhibition of enamel demineralization by CO2 laser treatment using polarization sensitive optical coherence tomography. J Biomed Opt 2008;13:054027.ArticlePubMed
  • 73. Lee C, Darling CL, Fried D. Polarization-sensitive optical coherence tomographic imaging of artificial demineralization on exposed surfaces of tooth roots. Dent Mater 2009;25:721-728.ArticlePubMedPMC
  • 74. Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater 2009;90:802-812.PubMedPMC
  • 75. Manesh SK, Darling CL, Fried D. Polarization-sensitive optical coherence tomography for the nondestructive assessment of the remineralization of dentin. J Biomed Opt 2009;14:044002.ArticlePubMed
  • 76. Wu J, Fried D. High contrast near-infrared polarized reflectance images of demineralization on tooth buccal and occlusal surfaces at lambda = 1310-nm. Lasers Surg Med 2009;41:208-213.ArticlePubMedPMCPDF
  • 77. Hirasuna K, Fried D, Darling CL. Near-infrared imaging of developmental defects in dental enamel. J Biomed Opt 2008;13:044011.ArticlePubMed
  • 78. Tao YC, Fried D. Near-infrared image-guided laser ablation of dental decay. J Biomed Opt 2009;14:054045.PubMedPMC
  • 79. Le MH, Darling CL, Fried D. Automated analysis of lesion depth and integrated reflectivity in PS-OCT scans of tooth demineralization. Lasers Surg Med 2010;42:62-68.ArticlePMCPDF
  • 80. Kang H, Jiao JJ, Lee C, Le MH, Darling CL, Fried D. Nondestructive Assessment of Early Tooth Demineralization Using Cross-Polarization Optical Coherence Tomography. IEEE journal of selected topics in quantum electronics: a publication of the IEEE Lasers Electro-opt Soc 2010;16:870-876.ArticlePubMedPMC
  • 81. Baumgartner A, Dichtl S, Hitzenberger CK, Sattmann H, Robl B, Moritz A, Fercher AF, Sperr W. Polarization-sensitive optical coherence tomography of dental structures. Caries Res 2000;34:59-69.ArticlePubMedPDF
  • 82. Feldchtein F, Gelikonov V, Iksanov R, Gelikonov G, Kuranov R, Sergeev A, Gladkova N, Ourutina M, Reitze D, Warren J. In vivo OCT imaging of hard and soft tissue of the oral cavity. Opt Express 1998;3:239-250.PubMed
  • 83. Wang XJ, Milner TE, de Boer JF, Zhang Y, Pashley DH, Nelson JS. Characterization of dentin and enamel by use of optical coherence tomography. Applied opt 1999;38:2092-2096.ArticlePubMed
  • 84. Everett MJBWC, Sathyam US, Silva BD, Fried D, Featherstone JD. Non-invasive diagnosis of early caries with polarization sensitive optical coherence tomography (PS-OCT) Laser in Dentistry V. SPIE; San Jose, CA: 1999. p. p177-183.
  • 85. Otis LL, Colston BW Jr, Everett MJ, Nathel H. Dental optical coherence tomography: a comparison of two in vitro systems. Dentomaxillofac Radio 2000;29:85-89.ArticlePubMed
  • 86. Ko AC, Choo-Smith LP, Hewko M, Leonardi L, Sowa MG, Dong CC, Williams P, Cleqhorn B. Ex vivo detection and characterization of early dental caries by optical coherence tomography and Raman spectroscopy. J Biomed Opt 2005;10:031118.PubMed
  • 87. Choo-Smith LP, Dong CC, Cleghorn B, Hewko M. Shedding new light on early caries detection. J Can Dent Assoc 2008;74:913-918.PubMedPMC
  • 88. Sowa MG, Popescu DP, Werner J, Hewko M, Ko AC, Payette J, Dong CC, Cleqhorn B, Choo-Smith LP. Precision of Raman depolarization and optical attenuation measurements of sound tooth enamel. Anal Bioanal Chem 2007;387:1613-1619.ArticlePubMedPDF
  • 89. Li J, Bowman C, Fazel-Rezai R, Hewko M, Choo-Smith LP. Speckle reduction and lesion segmentation of OCT tooth images for early caries detection. Conf Proc IEEE Eng Med Biol Soc 2009;2009:1449-1452.ArticlePubMed
  • 90. Chen Y, Otis L, Piao D, Zhu Q. Characterization of dentin, enamel, and carious lesions by a polarization-sensitive optical coherence tomography system. Appl Opt 2005;44:2041-2048.PubMed
  • 91. Meng Z, Yao XS, Yao H, Liang Y, Liu T, Li Y, Wang G, Lan S. Measurement of the refractive index of human teeth by optical coherence tomography. J Biomed Opt 2009;14:034010.ArticlePubMed
  • 92. Maia AM, Fonseca DD, Kyotoku BB, Gomes AS. Characterization of enamel in primary teeth by optical coherence tomography for assessment of dental caries. Int J Paediatr Dent 2010;20:158-164.ArticlePubMed
  • 93. Holtzman JS, Osann K, Pharar J, Lee K, Ahn YC, Tucker T, Sabet S, Chen Z, Gukasyan R, Wilder-Smith P. Ability of optical coherence tomography to detect caries beneath commonly used dental sealants. Lasers Surg Med 2010;42:752-759.ArticlePMC
  • 94. Lu Z, Kasaragod DK, Matcher SJ. Optic axis determination by fibre-based polarization-sensitive swept-source optical coherence tomography. Phys Med Biol 2011;56:1105-1122.PubMed

Tables & Figures

REFERENCES

    Citations

    Citations to this article as recorded by  

      • ePub LinkePub Link
      • Cite
        CITE
        export Copy Download
        Close
        Download Citation
        Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

        Format:
        • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
        • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
        Include:
        • Citation for the content below
        Early caries detection using optical coherence tomography: a review of the literature
        J Korean Acad Conserv Dent. 2011;36(5):367-376.   Published online September 14, 2011
        Close
      • XML DownloadXML Download
      Figure
      • 0
      Early caries detection using optical coherence tomography: a review of the literature
      Image
      Figure 1. The general scheme of an interferometric OCT setup. The linear polarizer and the polarizing beam splitter in parenthesis are equipped in PS-OCT. OCT, optical coherence tomography; PS-OCT, polarization-sensitive OCT. This illustration was partly modified with permission from the original one of Wojkowski12 by courtesy of Optical Society.
      Early caries detection using optical coherence tomography: a review of the literature

      Restor Dent Endod : Restorative Dentistry & Endodontics
      Close layer
      TOP