Iatrogenic perforations negatively impact the outcome of endodontic treatments. Studies on prognostic factors showed that perforations in the coronal third of the root with periodontal pocket formation have an unfavorable prognosis. A 36-year-old female was referred for endodontic evaluation of tooth #13 with a history of an iatrogenic perforation, happened 3 years ago. There was a sinus tract associated with perforation, 10 mm probing on the mesial and mesio-palatal, bleeding on probing, radiolucent lesion adjacent to the perforation and complete resorption of the interdental bone between teeth #13 and #12. After the treatment options were discussed, she chose to save the tooth. The tooth was accessed under rubber dam isolation, the perforation site was cleaned and disinfected using 0.5% sodium hypochlorite and sealed with calcium-enriched mixture cement. Eighteen months after treatment the tooth was functional and asymptomatic. The probing depths were normal without bleeding on probing. Radiographically, the interdental crestal bone formed between teeth #13 and #12. Despite all negative prognostic factors in this case (
This study aimed to compare the accuracy of conventional intraoral (CI) radiography, photostimulable phosphor (PSP) radiography, cone beam computed tomography (CBCT) and multidetector computed tomography (MDCT) for detection of strip and root perforations in endodontically treated teeth.
Mesial and distal roots of 72 recently extracted molar were endodontically prepared. Perforations were created in 0.2, 0.3, or 0.4 mm diameter around the furcation of 48 roots (strip perforation) and at the external surface of 48 roots (root perforation); 48 roots were not perforated (control group). After root obturation, intraoral radiography, CBCT and MDCT were taken. Discontinuity in the root structure was interpreted as perforation. Two observers examined the images. Data were analyzed using Stata software and Chi-square test.
The sensitivity and specificity of CI, PSP, CBCT and MDCT in detection of strip perforations were 81.25% and 93.75%, 85.42% and 91.67%, 97.92% and 85.42%, and 72.92% and 87.50%, respectively. For diagnosis of root perforation, the sensitivity and specificity were 87.50% and 93.75%, 89.58% and 91.67%, 97.92% and 85.42%, and 81.25% and 87.50%, respectively. For detection of strip perforation, the difference between CBCT and all other methods including CI, PSP and MDCT was significant (
If it is not possible to diagnose the root perforations by periapical radiographs, CBCT is the best radiographic technique while MDCT is not recommended.
This article presents the successful surgical management of a failed mineral trioxide aggregate (MTA) orthograde obturation of a tooth with a history of impact trauma and perforated internal root resorption. A symptomatic maxillary lateral incisor with a history of perforation due to internal root resorption and nonsurgical repair using MTA was referred. Unintentional overfill of the defect with MTA had occurred 4 yr before the initial visit. The excess MTA had since disappeared, and a radiolucent lesion adjacent to the perforation site was evident radiographically. Surgical endodontic retreatment was performed using calcium enriched mixture (CEM) cement as a repair material. Histological examination of the lesion revealed granulation tissue with chronic inflammation, and small fragments of MTA encapsulated within fibroconnective tissue. At the one and two year follow up exams, all signs and symptoms of disease had resolved and the tooth was functional. Complete radiographic healing of the lesion was observed two years after the initial visit. This case report illustrates how the selection of an appropriate approach to treatment of a perforation can affect the long term prognosis of a tooth. In addition, extrusion of MTA into a periradicular lesion should be avoided.
Fast-setting pozzolan cement (Endocem, Maruchi) was recently developed. The aim of this study was to investigate the effects of various root canal irrigants on the washout of Endocem in comparison to the previously marketed mineral trioxide aggregate (ProRoot; Dentsply) in a furcal perforation model.
ProRoot and Endocem were placed into acrylic molds on moist Oasis. Each mold was then immediately exposed to either physiologic saline, 2.5% sodium hypochlorite (NaOCl), or 2% chlorhexidine (CHX) under gentle shaking for five minutes. Washout testing was performed by scoring scanning electron microscope (SEM) images.
Endocem exhibited higher washout resistance compared to ProRoot, especially in the NaOCl group.
These results suggest that Endocem can be considered a useful repair material for furcal perforation, especially in a single-visit scenario.
To evaluate the accuracy of the Root ZX in teeth with simulated root perforation in the presence of gel or liquid type endodontic irrigants, such as saline, 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine liquid, 2% chlorhexidine gel, and RC-Prep, and also to determine the electrical conductivities of these endodontic irrigants.
A root perforation was simulated on twenty freshly extracted teeth by means of a small perforation made on the proximal surface of the root at 4 mm from the anatomic apex. Root ZX was used to locate root perforation and measure the electronic working lengths. The results obtained were compared with the actual working length (AWL) and the actual location of perforations (AP), allowing tolerances of 0.5 or 1.0 mm. Measurements within these limits were considered as acceptable. Chi-square test or the Fisher's exact test was used to evaluate significance. Electrical conductivities of each irrigant were also measured with an electrical conductivity tester.
The accuracies of the Root ZX in perforated teeth were significantly different between liquid types (saline, NaOCl) and gel types (chlorhexidine gel, RC-Prep). The accuracies of electronic working lengths in perforated teeth were higher in gel types than in liquid types. The accuracy in locating root perforation was higher in liquid types than gel types. 5.25% NaOCl had the highest electrical conductivity, whereas 2% chlorhexidine gel and RC-Prep gel had the lowest electrical conductivities among the five irrigants.
Different canal irrigants with different electrical conductivities may affect the accuracy of the Root ZX in perforated teeth.
Cone-beam computed tomography (CBCT) is a useful diagnostic tool for identification of both internal and external root configurations. This case report describes the endodontic management of a lateral incisor with both dens invaginatus and external root irregularity by using CBCT. Nonsurgical endodontic retreatment was performed on the lateral incisor with dens invaginatus. A perforation through the dens invaginatus and external concavity was repaired using mineral trioxide aggregate. After 18 mon of follow-up, there were no clinical symptoms. Recall radiographs appeared normal and showed healing of the periapical pathosis. The understanding of both internal root canal configuration and external root irregularity using CBCT can ensure predictable and successful results.