This study compared the amount of apically extruded bacteria during the glide-path preparation by using multi-file and single-file glide-path establishing nickel-titanium (NiTi) rotary systems.
Sixty mandibular first molar teeth were used to prepare the test apparatus. They were decoronated, blocked into glass vials, sterilized in ethylene oxide gas, infected with a pure culture of
The manual instrumentation technique tested in group KF extruded the highest number of bacteria compared to the other 4 groups (
All glide-path establishment instrument systems tested caused a measurable apical extrusion of bacteria. The manual glide-path preparation showed the highest number of bacteria extruded compared to the other NiTi glide-path establishing instruments.
Glide path preparation is recommended to reduce torsional failure of nickel-titanium (NiTi) rotary instruments and to prevent root canal transportation. This study evaluated whether the repetitive insertions of G-files to the working length maintain the apical size as well as provide sufficient lumen as a glide path for subsequent instrumentation.
The G-file system (Micro-Mega) composed of G1 and G2 files for glide path preparation was used with the J-shaped, simulated resin canals. After inserting a G1 file twice, a G2 file was inserted to the working length 1, 4, 7, or 10 times for four each experimental group, respectively (
The diameter at D0 level did not show any significant difference between the 1, 2, 4, and 10 times of repetitive pecking insertions of G2 files at working length. However, 10 times of pecking motion with G2 file resulted in significantly larger canal diameter at D1 (
Under the limitations of this study, the repetitive insertion of a G2 file up to 10 times at working length created an adequate lumen for subsequent apical shaping with other rotary files bigger than International Organization for Standardization (ISO) size 20, without apical transportation at D0 level.
This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations.
The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (
The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (
The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.
This study compared the cyclic fatigue resistance of nickel-titanium (NiTi) files obtained in a conventional test using a simulated canal with a newly developed method that allows the application of constant fatigue load conditions.
ProFile and K3 files of #25/.06, #30/.06, and #40/.04 were selected. Two types of testing devices were built to test their fatigue performance. The first (conventional) device prescribed curvature inside a simulated canal (C-test), the second new device exerted a constant load (L-test) whilst allowing any resulting curvature. Ten new instruments of each size and brand were tested with each device. The files were rotated until fracture and the number of cycles to failure (NCF) was determined. The NCF were subjected to one-way ANOVA and Duncan's
Spearman's rank correlation coefficient (ρ = -0.905) showed a significant negative correlation between methods. Groups with significant difference after the L-test divided into 4 clusters, whilst the C-test gave just 2 clusters. From the L-test, considering the negative correlation of NCF, K3 gave a significantly lower fatigue resistance than ProFile as in the C-test. K3 #30/.06 showed a lower fatigue resistance than K3 #25/.06, which was not found by the C-test. Variation in fatigue test methodology resulted in different cyclic fatigue resistance rankings for various NiTi files.
The new methodology standardized the load during fatigue testing, allowing determination fatigue behavior under constant load conditions.
The purpose was to investigate the preference and usage technique of NiTi rotary instruments and to retrieve data on the frequency of re-use and the estimated incidence of file separation in the clinical practice among general dentists.
A survey was disseminated via e-mail and on-site to 673 general dentists. The correlation between the operator's experience or preferred technique and frequency of re-use or incidence of file fracture was assessed.
A total of 348 dentists (51.7%) responded. The most frequently used NiTi instruments was ProFile (39.8%) followed by ProTaper. The most preferred preparation technique was crown-down (44.6%). 54.3% of the respondents re-used NiTi files more than 10 times. There was a significant correlation between experience with NiTi files and the number of reuses (
A large number of general dentists in Korea prefer to re-use NiTi rotary files. As their experience with NiTi files increased, the number of re-uses increased, while the frequency of breakage decreased. Operators who adopt the hybrid technique showed less tendency of separation even with the increased number of re-use.
The introduction of nickel-titanium alloy endodontic instruments has greatly simplified shaping the root canal systems. However, these new instruments have several unexpected disadvantages. One of these is tendency to screw into the canal. In this study, the influence of taper on the screw-in effect of the Ni-Ti rotary instrument were evaluated.
A total of 20 simulated root canals with an S-shaped curvature in clear resin blocks were divided into two groups. ProFile .02, .04, .06 (Dentsply-Maillefer) and GT rotary files .08, .10, .12 (Dentsply) were used in Profile group, and K3 .04, .06, .08, .10, and .12 (SybronEndo, Glendora) were used in K3 group. Files were used with a single pecking motion at a constant speed of 300 rpm. A special device was made to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in computer with designed software. The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test.
The more tapered instruments generated more screw-in forces in Profile group (
The more tapered instruments seems to produce more screw-in force. To avoid this screw-in force during instrumentation, more attention may be needed when using more tapered instruments.
Nickel-titanium (Ni-Ti) rotary instruments have some unexpected disadvantages including the tendency to screw-in to the canal. The purpose of this study was to evaluate the influence of root canal curvatures on the screw-in effect of Ni-Ti rotary files.
A total of 80 simulated root canals in clear resin blocks were used in the study. Canals with curvature of 0, 10, 20 and 30 degrees were instrumented with ProTaper instruments SX, S1, S2 and a ProFile of #25/0.06 to 1.0-2.0 mm beyond the initial point of root curvature. The screw-in force was measured with a specially designed device while canal was instrumented with a ProFile of #30/0.06 at a constant speed of 300 rpm. The data were subjected to one-way ANOVA and Scheffe multiple range test for post-hoc test.
Larger degree of canal curvature generated significantly lesser screw-in forces in all groups (
More attention needs to be paid when using rotary instruments in canals with less curvature than canals with more curvatures to prevent or reduce any accidental overinstrumentation.
Screw-in effect is one of the unintended phenomena that occurs during the root canal preparation with nickel-titanium rotary files. The aim of this study was to compare the screw-in effect among various nickel-titanium rotary file systems.
Six different nickel-titanium rotary instruments (ISO 20/.06 taper) were used: K3™ (SybronEndo, Glendora, CA, USA), Mtwo (VDW GmbH, München, Germany), NRT with safe-tip and with active tip (Mani Inc., Shioya-gun, Japan), ProFile® (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper® (Dentsply-Maillefer, Ballaigues, Switzerland). For ProTaper®, S2 was selected because it has size 20. Root canal instrumentations were done in sixty simulated single-curved resin root canals with a rotational speed of 300 rpm and single pecking motion. A special device was designed to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in a computer with designed software (LCV-USE-VS, Lorenz Messtechnik GmbH, Alfdorf, Germany). The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. P value of less than 0.05 was regarded significant.
ProTaper® produced significantly more screw-in effects than any other instruments in the study (p < 0.001). K3™ produced significantly more screw-in effects than Mtwo, and ProFile® (p < 0.001). There was no significant difference among Mtwo, NRT, and ProFile® (p > 0.05), and between NRT with active tip and NRT with safe one neither (p > 0.05).
From the result of the present study, it was concluded, therefore, that there seems significant differences of screw-in effect among the tested nickel-titanium rotary instruments. The radial lands and rake angle of nickel-titanium rotary instrument might be the cause of the difference.
This study compared the shaping ability of nickel-titanium rotary files with different rake angle and radial land.
The nickel-titanium files used in this study were Profile(Dentsply, Maillefer, Ballaigues, Switzerland), Hero 642(Micromega, Besancon, France), and K3(SybronEndo, Glendora, Ca, USA) file. Resin blocks substituted for root canals. 36 resin blocks were divided into 3 groups with 12 canals each. The time for canal preparation was recorded. The images of pre- and postoperative resin canal were scanned and those were superimposed. Amounts of canal deviation, total canal widths, inner canal widths, and outer canal widths were measured at apical 1, 2, 3, 4, 5, 6, and 7mm levels.
The amount of canal deviation was the smallest in Profile group, and the time for canal preparation was the shortest in Hero 642 group. K3 group resulted in competent characteristics in both measurements. Positive rake angle seemed to result in fast shaping of root canal and radial land guide the instrument in center of the canals and around curvatures. Radial land also tended to reduce the sense of screwing into the root canal.
The proper selection of the nickel-titanium file based on the knowledge about file design is needed for the safer, simpler and faster root canal therapy.