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ABSTRACT

Objectives: The aim of this study was to create a rapid admixture of mineral trioxide aggregate (MTA) and silver nanopar-
ticles (AgNPs) for chairside use in clinical settings to remediate the challenges associated with root canal treatment and 
pulp capping.
Methods: Synthesized AgNPs at ratios of 10 and 25% were added to commercially available MTA to create an admixture. 
The admixture was subjected to structural and morphological assessment using X-ray diffraction analysis (XRD), Fourier 
transform infrared (FT-IR) analysis, Raman spectroscopy, and scanning electron microscopy. Antioxidant activity was 
measured using the hydroxyl radical scavenging assay. A significance level of 0.05 was applied to determine statistical dif-
ferences.
Results: The addition of AgNPs decreased the carbonate peak intensity in XRD and FT-IR. The rod-like morphology of 
MTA was changed to a flake-like morphology with the addition of AgNPs. Antibacterial efficacy enhanced proportionally 
with the augmentation of AgNPs concentration.
Conclusions: The creation of rapid admixture of MTA and AgNPs during chairside use in clinical settings can deliver ben-
eficial characteristics of enhanced morphological features favoring mineralization and profound antibacterial effects to 
overcome the challenges associated with root canal treatment and pulp capping.
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INTRODUCTION

The primary objective of endodontic therapy is to 

eradicate all microorganisms within the root canal and 

effectively seal any potential communication channels 

between the pulp and surrounding tissues [1,2]. Among 

currently available root-end filling materials, mineral 

trioxide aggregate (MTA) plays a pivotal role in restor-

ative dentistry with improved biocompatibility and 

sealing ability [3]. MTA is a bioceramic with primary 

components consisting of tricalcium silicate, dicalcium 

silicate, and tricalcium aluminate. Key indications of 

MTA are root-end filling, pulp capping, pulpotomy, root 

perforation repair, apexification, and regenerative end-

odontics [4].

The antimicrobial property of MTA is limited, and 

MTA exhibits synergistic antimicrobial properties when 

mixed with other substances or medications frequently 

employed in endodontic treatment, such as chlorhex-

idine or antibiotics. These combinations have demon-

strated improved antibacterial effectiveness [5]. Incor-

poration of silver (Ag) into MTA could also enhance the 

antibacterial characteristics, increasing its efficacy in 

treating bacterial infections in dental applications [6,7]. 

The antibacterial properties of silver have been widely 

acknowledged for their effectiveness against a wide 

range of pathogens found in endodontic infections. The 

inclusion of silver in MTA offers supplementary advan-

tages in endodontic treatment that include reduced 

microleakage, extended longevity, and enhanced bio-

compatibility [8].

Literature has revealed that combining silver nanopar-

ticles (AgNPs) with MTA is an attractive option as a 

novel retrograde filling, with increased effectiveness of 

AgNPs in inhibiting the growth of Enterococcus faecalis 

[9,10]. Similarly, MTA and calcium-enriched mixture 

incorporated with AgNPs had a significant effect on bac-

teria associated with dental infections [10]. Further, the 

morphology of the mineral composites also influenced 

the material’s efficiency in endodontics. The elongated 

form of rod-like particles enhanced infiltration into the 

adjacent tissues or biomaterial matrices, thus strength-

ening the interactions between MTA particles and the 

surrounding environment, favoring apatite formation 

[9,11]. Despite promising results, there is no product 

that has been translated into clinical use.

The creation of a rapid admixture of MTA and AgNPs 

for chairside use in clinical settings could serve as a 

practical way to achieve the beneficial characteristics of 

enhanced mineralization and antioxidant effects. Such 

synergistic actions are crucial to remediate the chal-

lenges associated with root canal treatment and pulp 

capping. This study aimed to enhance the properties of 

three different commercially available MTAs, including 

MTA White, MTA Plus, and MTA Repair, by incorporat-

ing AgNPs. Additionally, structural, morphological, and 

antibacterial characteristics were evaluated.

METHODS

Synthesis of silver nanoparticles
AgNPs were synthesized utilizing a chemical reduction 

approach [12]. Constituents of reactive materials were 

produced in double-distilled water. For the standard 

procedure, a solution containing 50 mL of silver nitrate 

(AgNO3) with a concentration of 1 × 10−3 M was heated 

until it reached its boiling point. A volume of 5 mL of 

1% sodium borohydride (NaBH4) was added gradually 

to this mixture. The solution was vigorously agitated 

during this procedure and heated until a discernible 

change in color (light brown) occurred. Eventually, 

it was extracted in powder form (50–80 nm) from the 

heating component and agitated until it reached the 

ambient temperature of 100°C for 12 hours [13].

Silver nanoparticles intruded mineral trioxide aggre-
gate admixture
Physical mixing of varying ratios of AgNPs (10% and 

25%) with different brands of MTA White (Angelus, Lon-

drina, Brazil), MTA Plus (Prevest DenPro, Jammu, India), 

and MTA Insta Repair (Raman Research Products, Ban-

galore, India) was carried out. The numbers ‘10’ and ‘25’ 

indicate the content (wt%) of AgNPs. Samples were run 

in triplicate in similar experimental conditions with a 

total sample size of n = 27 (9 samples per group). An ad-

mixture of 3 g was dispensed on a paper pad and mixed 

with sterile water in the ratio of 0.26, using a plastic spat-

ula for a duration of 1 to 3 minutes till a thick paste-like 

consistency was achieved. The mixture was separated 

into portions and allowed to set for 30 minutes.
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Characterization
MTA-AgNP admixture was analyzed for X-ray diffraction 

patterns to assess the crystalline phases with the wave-

length Cu Kα (Bruker D8 Advance; Bruker, Karlsruhe, 

Germany). Functional group properties were analyzed 

through Raman spectroscopy (ALPHA300 RA; WITec, 

Ulm, Germany). Morphological and elemental analyses 

were done using scanning electron microscopy (SEM) 

(JSM-IT 800; JEOL, Tokyo, Japan). The samples were 

loaded onto the stub using adhesive tape and sput-

ter-coated with platinum. Imaging of the sample was 

done at a scale of 1 μm.

Antioxidant activity
The hydroxyl radical scavenging assay was done by tak-

ing a known volume of the test sample [14]. The mixture 

was made as a 10 mM stock solution and incubated for 

30 minutes at 37°C to allow hydroxyl radicals to react. 

Following the addition of 1 mL of 10% trichloroacetic 

acid and 1 mL of 1% thiobarbituric acid solution, the 

reaction was then stopped by heating the mixture in 

a boiling water bath for 30 minutes to generate a pink 

complex denoting the endpoint. Following cooling, 

a spectrophotometer was used to measure the ab-

sorbance at 532 nm. The hydroxyl radical scavenging 

activity was then calculated as a percentage using the 

following formula: % scavenging activity = [(control ab-

sorbance – sample absorbance) / control absorbance] × 

100. The results were validated by including the appro-

priate controls and replicates [15].

Statistical analysis
Statistical analysis was performed to evaluate differ-

ences in antioxidant potential based on the percentage 

of reduction achieved across three groups at varying 

concentrations. A one-way analysis of variance (ANO-

VA) test was performed, as the data followed a normal 

distribution, had similar variances, and were indepen-

dent measurements. ANOVA was used to calculate the 

F-statistic. A significance level of p < 0.05 was applied 

to determine statistically meaningful differences. The 

analysis was performed using IBM SPSS version 24 (IBM 

Corp, Armonk, NY, USA).

RESULTS

Structural analysis
MTA contains calcium silicate as a major component 

along with traces of zirconia, bismuth, and phosphate. 

In the case of X-ray diffraction dominant Ca3SiO5 crys-

talline phase was noted along with the diffracted peaks 

of CaCO3.

Fourier transform infrared (FT-IR) spectra demon-

strated in Figure 1 revealed silica (460 cm–1) and phos-

phate (575 cm–1) vibrations, indicating the presence of 

bioceramics. The Ca3SiO5 crystalline phase was evinced 

as the primary phase along with CaCO3. When com-

pared to MTA White samples, some noise peaks were 

observed, intense 29° peaks indicating dominant cal-

cium carbonate were also noted. The CaCO3 peak ap-

pears suppressed in the presence of AgNPs. Compared 

to MTA White samples, deep silica and phosphate vi-

brations were noted in other samples, along with sharp 

crystalline peaks exhibited in X-ray diffraction analysis 

(XRD) [11,16].

Morphological analysis
Imaging of the samples was done using SEM at 1 μm 

as illustrated in Figure 2. Tiny rod-shaped morphology 

was evident in the pure MTA White sample. After intro-

ducing silver into MTA White sample, AgNPs displayed 

flake-like morphology. Further, rods are joined together 

to form an interconnected bunch-rod appearance in 

MTA Plus samples. Infusion of silver on bunched rod 

appearances resulted in flakes and sheet-like morphol-

ogy. Increasing the concentration of small spherical 

silver particles with the integration of bunched rods was 

perceptible. Non-homogeneous spiky rods, as well as 

elongated sheet-like morphology, were noted in pure 

MTA Insta Repair. Further addition of silver into these 

rods and sheets revealed integrated flake-like morphol-

ogy.

Antioxidant activity
The hydroxyl radical scavenging assay, revealed in Fig-

ures 3 and 4, demonstrated the ability of the samples to 

neutralize harmful hydroxyl radicals. Results demon-

strated that all samples with AgNPs exhibited antioxi-

dant activity. The inter-group comparison of antioxidant 
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activity of the three materials (MTA White, MTA Plus, 

and MTA Insta Repair) was analyzed using one-way 

ANOVA to assess the differences in reduction percent-

age with different concentrations of AgNPs (pure; 10 

mg and 25 mg). Statistical significance was observed in 

all materials, with F-statistics of 221.71 (p = 2.38 × 10−6) 

for MTA White, 160.33 (p = 6.20 × 10−6) for MTA Plus, 

and 72.33 (p = 6.32 × 10−5) for MTA Insta Repair. Further, 

intragroup comparison was done using repeated mea-

sures ANOVA. Results revealed statistically significant 

differences within each dental cement group. In MTA 

White group, F-statistic was 221.71 with a p-value of 2.38 

× 10−6 2.38 × 10−6. MTA Plus group exhibited significant 

variation with an F-statistic of 160.33 and a p-value of 

6.20×10−6. MTA Insta Repair group also demonstrated 

significant differences, with an F-statistic of 72.33 and 

a p-value of 6.32 × 10–5. The results revealed that AgNPs 

exhibit a significant hydroxyl radical scavenging ability.

DISCUSSION

MTA has emerged as a versatile material for root-end 

filling and pulp-capping agents due to its bioactive and 

biocompatible properties. Additional properties like 

good sealing ability, setting properties, and antimicrobi-

al potential have made it the most sought-after bioactive 

material in endodontics [17]. However, the antimicro-

bial property of MTA is potentially less; enhancing the 

antibacterial property of MTA is of profound impor-

tance, considering the increasing evidence of persistent 

periapical infections. The addition of AgNPs to the MTA 

matrix has been reported by multiple studies to improve 

antimicrobial properties. The lower concentrations of 

AgNPs have also been demonstrated to impart sufficient 

Figure 1. X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectra of the tested materials. (A) XRD spectra of pure MTA White (denoted 
as ‘A’), A-10, and A-25. (B) XRD spectra of MTA Plus (denoted as ‘CM’), CM-10, and CM-25. (C) XRD spectra of pure MTA Insta Repair (denoted as ‘RR’), 
RR-10, and RR-25. (D) FT-IR spectra of A, A-10, and A-25. (E) FT-IR spectra of CM, CM-10, and CM-25. (F) FT-IR spectra of RR, RR-10, and RR-25. *10 
and 25 represent the contents (mg) of silver nanoparticles in pure base materials, including A, RR, and CM, respectively. MTA White: Angelus, 
Londrina, Brazil; MTA Plus: Prevest DenPro, Jammu, India; MTA Insta Repair: Raman Research Products, Bangalore, India.
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Figure 2. Scanning electron microscopy (SEM) images showing the morphological characteristics of the tested materials. (A) Pure MTA White 
(denoted as ‘A’). (B) A + 10 mg silver nanoparticles (AgNPs). (C) A + 25 mg AgNPs. (D) Pure MTA Plus (denoted as ‘CM’). (E) CM + 10 mg AgNPs. 
(F) CM + 25 mg AgNPs. (G) Pure MTA Insta Repair (denoted as ‘RR’). (H) RR + 10 mg AgNPs. (I) RR + 25 mg AgNPs. MTA White: Angelus, Londrina, 
Brazil; MTA Plus: Prevest DenPro, Jammu, India; MTA Insta Repair: Raman Research Products, Bangalore, India.
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Figure 3. Intergroup comparison of the antioxidant activity of MTA 
White group, MTA Plus group, and MTA Insta Repair group. AgNP, 
silver nanoparticle. MTA White: Angelus, Londrina, Brazil; MTA Plus: 
Prevest DenPro, Jammu, India; MTA Insta Repair: Raman Research 
Products, Bangalore, India.
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Figure 4. Intra-group comparison of the antioxidant activity. AgNP, 
silver nanoparticle. MTA White: Angelus, Londrina, Brazil; MTA Plus: 
Prevest DenPro, Jammu, India; MTA Insta Repair: Raman Research 
Products, Bangalore, India.
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antimicrobial properties while maintaining the biocom-

patibility and mechanical integrity of MTA [9]. Although 

the results have shown promise, there are currently no 

products that are available for clinical use. Developing 

a quick and easy mixture of MTA and AgNPs for use 

directly in the dental office as an admixture could be a 

practical approach to benefit from the advantages. The 

current study focused on validating the structure and 

morphology of an MTA mixture infused with AgNPs.

AgNPs have been a versatile source to increase anti-

microbial activity. Their addition tends to alter the crys-

talline configuration and phase transitions favorable 

to render antimicrobial properties [11,12]. Our study 

results indicated the presence of silver in all samples 

with prominent peaks due to the crystalline nature of 

silver, in addition to strong vibration of silica and blend-

ed phosphate vibrations, despite being a non-homog-

enized preparation. Calcium silicate as well as calcium 

carbonate diffraction peaks were observed through the 

XRD patterns. After the impregnation of silver, the noise 

peaks turned into sharp peaks due to the crystalline 

nature of silver. Sharp peaks are indicative of strong 

vibration of silica and blended phosphate vibration. 

After the addition of AgNPs, all three samples exhibited 

a decrease in intensity in carbonate peaks both in XRD 

as well as FT-IR. AgNPs caused a reduction of carbonate 

peak intensity both in XRD as well as FT-IR due to po-

tential interaction or interference between the AgNPs 

and the carbonate molecules. Adsorption of carbonate 

ions to the surface of AgNPs resulted in reduced avail-

ability for the detection of carbonate molecules during 

analysis. This adsorption process may change the vibra-

tional or diffractive characteristics of the carbonate ions, 

thus decreasing their intensities at peaks. Additionally, 

distinct silica and phosphate vibrations and the pres-

ence of intense crystalline peaks indicate a significant 

impact of AgNPs on the crystal structure of the sam-

ples. These characteristics of AgNPs in the presence of 

calcium-based composites are similar to other studies, 

irrespective of the method of synthesis [18]. Further, 

results were also indicative of the changes in the crys-

tal configuration in terms of lattice parameters, crystal 

morphology, or orientation, suggestive of an intricate 

interplay between AgNPs and MTA matrix leading to 

fundamental re-arrangement of the crystal lattice. Cal-

cium silicate and calcium carbonate diffraction peaks 

in the XRD patterns could be ascribed to a crystalline 

phase transition due to a complex molecular interaction 

between the AgNPs and the MTA matrix. AgNPs do not 

show changes in crystalline configuration with minimal 

concentration; prominent alterations are due to the 

higher concentration in the prepared admixture [19].

Structural changes evidenced by SEM revealed a 

rod-like morphology of MTA. The addition of spheri-

cal-shaped AgNPs resulted in an alteration of rod ori-

entation with flake-like morphology. In most samples, 

MTA explicated a rod-like morphology. The morphol-

ogy has an impactful role in the mineralization and 

durability of the restoration. It is hypothesized that, 

along with mineral components, crystal structure plays 

an enormous role in tubule occlusion. MTA sealers 

predominantly exhibit rod-like morphology addition of 

AgNPs resulted in an alteration of rod orientation with 

flake-like morphology. The rods attached to the flakes of 

AgNPs were observed at all angles. Complete adherence 

of rods to the particles is ascribed to the nominal size 

of the rod-like structure [11]. The transformation from 

a rod-like to a flake-like morphology in MTA involves 

intricate molecular-level changes that influence crystal 

growth. The incorporation of AgNPs may modify the 

nucleation kinetics, crystallographic orientations, or 

surface energies, thereby influencing the formation of 

flake-like structures with a different molecular arrange-

ment [19].

AgNPs have a profound hydroxyl radical scavenging 

ability, due to a high surface area to volume ratio, favor-

ing interaction with free radicals. Antioxidant activity 

was evident in all samples with AgNPs. This substan-

tiates the advantage of enhanced ability to scavenge 

hydroxyl radicals and increase the probability of inter-

actions with free radicals. This characteristic is benefi-

cial in the management of inflammatory environments 

that persist in periapical infections [16]. Additionally, 

AgNPs also have the prowess to augment the efficacy of 

other antioxidants to provide a synergistic effect, which 

is crucial in the regulation of oxidative stress. However, 

studies also indicate that antioxidant efficacy can vary 

with different formulations [20]. Variations in antiox-

idant activity among the MTA types were observed in 

the study. MTA White exhibited improved efficacy when 
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compared to other products; however, the differences 

were minimal. This could be attributed to the similar 

composition of the key ingredients like calcium silicate, 

bismuth oxide, calcium sulfate, and calcium hydroxide.

These findings underscore the potential clinical appli-

cations of AgNPs in dental and biomedical fields, where 

oxidative stress is implicated in inflammation and tissue 

damage. Importantly, when used at appropriate con-

centrations, AgNPs display favorable biocompatibility, 

making them suitable for medical applications with-

out adversely affecting cell viability. Together, these 

attributes position AgNPs as valuable components in 

formulations aimed at combating oxidative stress and 

promoting health.

The incorporation of AgNPs into the MTA matrix con-

fers several benefits, like enhanced antioxidant prop-

erties, improved sealing ability, potentially enhanced 

bioactivity, and sustainability [18]. The sustained re-

lease of calcium and hydroxyl ions from the MTA-AgNPs 

admixture is expected to promote a favorable microen-

vironment for tissue regeneration and antimicrobial ac-

tivity [9]. However, the incorporation of AgNPs into the 

MTA matrix may also pose potential challenges, such 

as the potential impact on the material’s physical and 

mechanical properties, as well as the possible cytotoxic 

effects of AgNPs at high concentrations [20]. Therefore, 

a careful balance between the benefits and the bio-

compatibility of the MTA-AgNPs admixture must be 

established through comprehensive in vitro and in vivo 

evaluations.

CONCLUSIONS

The structural and morphological characterization of 

AgNPs-intruded MTA admixture as a chairside restor-

ative medicament holds promise for enhanced anti-

oxidant properties, improved clinical outcomes, and 

sustainability. However, further research is needed to 

optimize the formulation and ensure the safety and effi-

cacy of this novel MTA-based material.
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