Warning: mkdir(): Permission denied in /home/virtual/lib/view_data.php on line 81

Warning: fopen(upload/ip_log/ip_log_2024-12.txt): failed to open stream: No such file or directory in /home/virtual/lib/view_data.php on line 83

Warning: fwrite() expects parameter 1 to be resource, boolean given in /home/virtual/lib/view_data.php on line 84
Apical microleakage of MTA with 4-META/MMA & TBB resin as a root-end filling material

Apical microleakage of MTA with 4-META/MMA & TBB resin as a root-end filling material

Article information

Restor Dent Endod. 2009;34(4):371-376
Publication date (electronic) : 2009 July 31
doi : https://doi.org/10.5395/JKACD.2009.34.4.371
Department of Conservative Dentistry, Ulsan University, Asan Medical Center, Korea.
Corresponding author: Won-Kyung Yang. Assistant professor, Department of Conservative Dentistry, Asan Medical Center, Ulsan University, 388-1, Pungnap-Dong, Songpa-Gu, Seoul, Korea, 138-736. Tel: 02-3010-3824, Fax: 02-3010-6967, wonkys504@hanmail.net
Received 2009 June 11; Revised 2009 June 27; Accepted 2009 July 03.

Abstract

We evaluated in vitro microleakage of Mineral Trioxide Aggregate (MTA) powder with 4-methacryloxyethyl trimellitate anhydride (4-META) / methyl methacrylate (MMA) & tri-n-butylborane (TBB) resin as a retrograde filling material by using methylene blue dye method.

Fifty-two single rooted, extracted teeth were instrumented and obturated with gutta percha and AH plus sealer. The apical 3mm of each root was resected and 3mm deep ultrasonic root end preparation was done. External surface of roots was coated with nail varnish. Prepared teeth were randomly divided into five groups; Negative control: completely covered with nail varnish; Positive control: coated with nail varnish except for apical foramen; Group 1 (retrofilled with Portland cement); Group 2 (retrofilled with MTA); Group 3 (retrofilled with MTA powder mixed with 4-META/MMA & TBB resin). Immediately after completion of root-end filling, all specimens were submerged in methylene blue dye for 72 hours in 37℃ incubator. The roots were longitudinally sectioned and measured for extent of dye penetration by three different examiners under microscope (×10). The results were statistically analyzed using one way ANOVA and Turkey's HSD test. No leakage was evident in negative control and complete leakage in positive control group. Group 3 showed significantly less leakage than group 1 and 2 (p < 0.01). There was no significant difference between group 1 and 2 (p > 0.01).

It was concluded that MTA powder with 4-META/MMA & TBB resin was excellent in reducing initial apical microleakage.

References

1. Ingle JI, Beveridge EE, Glick DH, Weichman JA. In : Ingle JI, Barkland LK, eds. Endodontic success and failure: the Washington study. Endodontics 1994. 4rd edth ed. Baltimore: Williams and Wilkins; 21–45.
2. Rud J, Andreasen JO, Jensen JE. A multivariate analysis of the influence of various factors upon healing after endodontic surgery. Int J Oral Surg 1972. 1258–271.
3. Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD. Cytotoxicity of four root end filling materials. J Endod 1995. 21489–492.
4. Harty FJ, Parkins BJ, Wengraf AM. The success rate of apicoectomy. A retrospective study of 1016 cases. Br Dent J 1970. 129407–413.
5. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod 1993. 19591–595.
6. Lee SJ, Monsef M, Torabinejad M. Sealing ability of a mineral trioxide aggregate for repair of lateral root perforations. J Endod 1993. 19541–544.
7. Holland R, et al. Mineral trioxide aggregate repair of lateral root perforations. J Endod 2001. 27281–284.
8. Ford TR, Torabinejad M, McKendry DJ, Hong CU, Kariyawasam SP. Use of mineral trioxide aggregate for repair of furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995. 79756–763.
9. Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR. Investigation of mineral trioxide aggregate for root-end filling in dogs. J Endod 1995. 21603–608.
10. Ford TR, Torabinejad M, Abedi HR, Bakland LK, Kariyawasam SP. Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 1996. 1271491–1494.
11. Faraco IM Jr, Holland R. Response of the pulp of the dogs to capping with mineral trioxide aggregate or a calcium hydroxide cement. Dent Traumatol 2001. 17163–166.
12. Shabahang S, Torabinejad M. Treatment of teeth with open apices using mineral trioxide aggregate. Pract Periodontics Aesthet Dent 2000. 12315–320.
13. Keiser K, Johnson CC, Tipton DA, Cytotoxicity of. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000. 26288–291.
14. Koh ET, McDonald F, Pit Ford TR, Torabinejad M. Cellular response to mineral trioxide aggregate. J Endod 1998. 24543–547.
15. Torabinejad M, Hong CU, McDonald F, Pit Ford TR. Physical and chemical properties of a new root-end filling material. J Endod 1995. 21349–353.
16. Ber BS, Hatton JF, Stewart GP. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J Endod 2007. 331231–1234.
17. Olmez A, Oztaş N, Başak F, Sabuncuoğlu B. A histopathologic study of direct pulp-capping with adhesive resins. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1998. 8698–103.
18. Rud J, Munksgaard EC, Andreasen JO, Rud V, Asmussen E. Retrograde root filling with composite and a dentin-bonding agent. 1. Endod Dent Traumatol 1991. 7118–125.
19. Rud J, Munksgaard EC, Andreasen JO, Rud V. Retrograde root filling with composite and a dentinbonding agent. 2. Endod Dent Traumatol 1991. 7126–131.
20. Miles DA, Anderson RW, Pashley DH. Evaluation of the bond strength of dentin bonding agents used to seal resected root apices. J Endod 1994. 20538–541.
21. Fernandes AM, Silva GA, Lopes N Jr, Napimoga MH, Benatti BB, Alves JB. Direct capping of human pulps with a dentin bonding system and calcium hydroxide:an immunohistochemical analysis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008. 105385–390.
22. Tanaka Y, Sugaya T, Tanaka S, Kawanami M. Long-term durability of root-end sealing with 4-META/MMA-TBB resin. Dent Mater J 2004. 23453–456.
23. Hayashi M, Kinomoto Y, Takeshige F, Ebisu S. Prognosis of intentional replantation of vertically fractured roots reconstructed with dentin-bonded resin. J Endod 2004. 30145–148.
24. Kitamura C, Ogawa Y, Morotomi T, Terashita M. Differential induction of apoptosis by capping agents during pulp wound healing. J Endod 2003. 2941–43.
25. Tanaka Y, Sugaya T, Kawanami M. Durability of adhesion between 4-META/MMA-TBB resin and cementum. Dent Mater J 2004. 23265–270.
26. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod 2006. 32569–572.
27. Antunes Bortoluzzi E, Juárez Broon N, Antonio Hungaro Duarte M, de Oliveira Demarchi AC, Monteiro Bramante C. The use of a setting accelerator and its effect on pH and calcium ion release of mineral trioxide aggregate and white Portland cement. J Endod 2006. 321194–1197.
28. Naqvi AA, Nagadi MM, Al-Amoudi OS. Prompt gamma analysis of chlorine in concrete for corrosion study. Appl Radiat Isot 2006. 64283–289.
29. Bortoluzzi EA, Broon NJ, Bramante CM, Felippe WT, Tanomaru Filho M, Esberard RM. The influence of calcium chloride on the setting time, solubility, disintegration, and pH of mineral trioxide aggregate and white Portland cement with a radiopacifier. J Endod 2009. 35550–554.
30. Wiltbank KB, Schwartz SA, Schindler WG. Effect of selected accelerants on the physical properties of mineral trioxide aggregate and Portland cement. J Endod 2007. 331235–1238.
31. Bortoluzzi EA, Broon NJ, Bramante CM, Garcia RB, de Moraes IG, Bernardineli N. Sealing ability of MTA and radiopaque Portland cement with or without calcium chloride for root-end filling. J Endod 2006. 32897–900.
32. Andelin WE, Browning DF, Hsu GHR, Roland DD, Torabinejad M. Microleakage of resected MTA. J Endod 2002. 28573–574.
33. Torabinejad M, Wilder Smith P, Kettering JD, Pitt Ford TR. Comparative investigation of marginal adaptation of mineral trioxide aggregate and other commonly used root end filling materials. J Endod 1995. 21295–299.
34. Islam I, Chng HK, Yap AU. Comparison of the root-end sealing ability of MTA and Portland cement. Aust Endod J 2005. 3159–62.

Article information Continued

Figure 1

Results of dye penetration measurement (*means statically significant difference).

Figure 2

Buccolingual sectional view of each group with methylene blue dye penetration.

Table 1

Experimental design of each groups

Table 1

Table 2

Results of dye penetration measurement

Table 2

*means statically significant difference